Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ферменты.doc
Скачиваний:
38
Добавлен:
09.02.2015
Размер:
141.31 Кб
Скачать

Лекция 11

Ферменты. Кинетика ферментативных реакций

Биохимические реакции протекают только при участии ферментов, т. е. катализаторов, являющихся по своему составу и строению белками. Как из курса неорганической, так и из курса органической химии известны вещества, проявляющие каталитическое действие. Такие вещества, называемые катализаторами, есть во всех классах веществ – простые вещества (как металлы, так и неметаллы), кислоты, основания, оксиды, соли. Особенно широко применяются катализаторы в органической химии, так как для органических веществ характерна относительно низкая реакционная способность. Переходя на новую ступень химии – биохимию, мы встречаемся и с новым классом катализаторов – ферментами. Бесконечное разнообразие структуры белковых молекул оказывается предпосылкой биосинтеза специальных белков, пригодных в качестве катализаторов для всех осуществляющихся в природе биохимических процессов.

Ферментативному катализу присущи характерные особенности всех каталитических процессов, но обнаруживаются и принципиально важные отличия. К общим закономерностям относятся следующие:

  • Ферменты увеличивают скорость реакции, но не смещают химическое равновесие;

  • Ферменты ускоряют те реакции, которые могут самопроизвольно протекать в данных условиях;

  • Несамопроизвольная реакция, сопряженная с самопроизвольной, также протекает при участии ферментов

  • Скорость ферментативной реакции зависит от температуры и концентраций реактантов (субстрата и фермента).

К специфическим особенностям ферментативных реакций относятся следующие:

  • Ферменты отличаются более высокой, чем обычные катализаторы, избирательностью к субстратам. Часто фермент ускоряет только одну биохимическую реакцию или достаточно узкую группу родственных реакций;

  • Ферменты действуют стереоспецифически, ускоряя синтез только одного из возможных пространственных изомеров.

  • Ферменты проявляют активность в ограниченном интервале температуры – ниже температуры денатурации данного белка;

  • Активность фермента зависит от рН среды; у каждого фермента есть оптимальное значение рН, при котором активность максимальна.

  • Многие ферменты действуют только при активировании коферментами – низкомолекулярными молекулами и ионами.

  • Ферменты могут находиться в растворенном состоянии или быть встроенными в клеточные мембраны.

  • Активность фермента может зависеть от концентрации продукта реакции.

Ферменты присутствуют в клетках в крайне малых концентрациях. Определение их в тканевых экстрактах или жидкостях – сложная задача. Поэтому разработаны особые подходы к определению каталитической активности ферментов. Измеряют скорость реакции, идущей под действием имеющегося фермента. Результат выражают в единицах активности фермента. Затем сравнивают относительные количества фермента в разных экстрактах. Единицы активности выражают в мкмоль (10–6), нмоль (10–9) или пмоль (10–12) израсходованного субстрата или образовавшегося продукта в единицу времени (минуту). Международные единицы активности обозначаются U, nU и pU.

К ферментативному катализу приложимы основные положения теории скоростей химических реакций. Для протекания реакции необходимо сближение (столкновение) молекул фермента (встречаются обозначения F, Е, Enz) и субстрата (S) достаточное для образования связей. Для того, чтобы столкновение оказалось продуктивным (активным), молекулы должны иметь энергию, достаточную для преодоления энергетического барьера. Как известно, этот барьер называется энергией активации. На отдельных стадиях ферментативной реакции фермент выступает как обычный реактант, реагируя в молярном отношении 1:1. Ферментативные процессы часто представляют специальными схемами. Например, реакция переноса группы

A–B + D A–D + B

при участии фермента изображается следующим образом:

A–B Enz A–D

B Enz–A D

В качестве еще одного примера написания схемы ферментативной реакции возьмем реакцию изомеризации

S  изо-S

С участием фермента реакция записывается так:

S Enz изо-S

Enz–S

Стрелки создают картину циклического процесса, в который вовлекаются молекулы субстрата S и выходят молекулы продукта, часто обозначаемого как P.

Фермент представляет собой сложную молекулу, состоящую из сотен аминокислотных остатков и тысяч атомов. В связывании с субстратом может участвовать только небольшая группа атомов в такой молекуле. Эта группа называется активным центром. Э. Фишер предложил модель взаимодействия Enz–S как соответствие ключа и замка. Только при наличии такого соответствия может осуществиться превращение субстрата. Становится понятной избирательность действия фермента. Эта модель не потеряла своего значения, но позднее была предложена модель индуцированного соответствия (Кошланд), в которой учитывается гибкость молекулы фермента. При сближении молекул фермента и субстрата происходят конформационные изменения фермента, придающие окончательную конфигурацию реакционному центру. Молекулы, аналогичные субстрату, тоже могут вызывать конформационные изменения фермента, но при этом появляются различия в конформациях, при которых не возникает работающий активный центр.

Влияние температуры

В ограниченном интервале температур до начала денатурации белка скорость ферментативной реакции увеличивается, подчиняясь обычному закону, выражаемому уравнением Аррениуса. Для многих ферментативных реакций характерен температурный коэффициент скорости Q10, близкий к двум. Это соответствует энергии активации Еа= 55 кДж/моль при 37.

При приближении к температуре денатурации белка, прирост скорости замедляется, затем достигается максимальная скорость, и далее начинается резкое падение скорости, так как исчезают молекулы фермента, способные к катализу. Зависимость скорости каталитической реакции от температуры представлена на рисунке 1.

рис. 1

Зависимость от рН

При изменении рН смещаются равновесия переноса протонов, и соответственно заряды на молекулах фермента, а также нередко на молекулах субстрата. При низких значениях рН фермент протонируется и приобретает положительный заряд. При высоких – депротонируется, и приобретает отрицательный заряд. Это влияет на скорость ферментативных реакций. Если активность проявляет только одна из форм молекулы фермента с определенным значением заряда, то концентрация ее проходит через максимум при некотором значении рНМ, и активность будет проявляться в пределах рНМ1. Получается зависимость активности от рН, представленная на рис. 2.

рис. 2

Для каждого фермента существует оптимальное значение рН, про котором проявляется наибольшая активность. При больших отклонениях рН от оптимального значения может происходить денатурация фермента.

Зависимость от концентраций

В математической форме зависимость скорости от концентрации представляется в виде кинетического уравнения. Скорость ферментативной реакции зависит как от концентрации субстрата, так и от концентрации фермента при прочих равных условиях (Т, рН). Необходимо учитывать, что фермент высокомолекулярное вещество, и его концентрация во много раз меньше, чем концентрация субстрата. Пусть в растворе содержатся субстрат с Mr = 100 и фермент c Mr = 100000. Массовые концентрации обоих реактантов 1 мг/л. Их молярные концентрации будут:

с(S) = 110–5 моль/л, с(E) = 110–8 моль/л

На 1000 молекул субстрата приходится одна молекула фермента. Реальное соотношение может быть значительно больше. Этим определяется форма кинетических уравнений в ферментативной кинетике.

Далее рассмотрим реакцию, в которой участвуют фермент и только один субстрат. Но выводы будут справедливы и для более сложных реакций, в которых участвуют субстрат и реагент, или два субстрата.

Типичной особенностью кинетики ферментативных реакций оказалось, что скорость пропорциональна концентрации субстрата при его малой концентрации, и становится независимой от концентрации при большой концентрации. Эти результаты эксперимента графически изображаются кривой линией на рис. 3.

Рис. 3

Для объяснения этой зависимости была предложена схема реакции в две стадии. В начале по обратимой реакции образуется фермент-субстратный комплекс SE, в котором происходит преобразование молекулы субстрата. На второй стадии связь изменившейся молекулы субстрата с ферментом разрывается, и появляется свободная молекула продукта P. Каждое превращение характеризуется своей константой скорости.

k1 k2

S + E S....E  E + P

k1

Для процесса с таким механизмом Л. Михаэлисом и Ментен было выведено уравнение зависимости скорости от концентрации S, получившее название уравнения Михаэлиса-Ментен.

(Далее вывод уравнения при чтении лекции может быть пропущен.)

Напишем кинетические уравнения для образования конечного продукта и фермент-субстратного комплекса:

v = = k2c(SE) (1)

= k1c(S)c(E) k1c(SE) k2c(SE) (2)

Общая (начальная) концентрация фермента всегда много меньше концентрации субстрата, что отмечено выше. В ходе реакции концентрация свободного фермента c(E) уменьшается вследствие образования комплекса

c(E) = co(E) c(SE) (3)

В стационарном состоянии концентрация комплекса остается постоянной:

= 0

Из этого условия получаем

k1c(S)c(E) k1c(SE) k2c(SE) = 0 (4)

Подставляем выражение (3) в (4)

k1c(S)[co(E) c(SE)] k1c(SE) k2c(SE) = 0 (5)

В уравнении (5) раскрываем квадратные скобки и преобразуем его для нахождения концентрации фермент-субстратного комплекса SE:

Делением числителя и знаменателя на k1, получаем

(6)

Выражение, состоящее из констант, в знаменателе уравнения называют константой МихаэлисаKM:

(7)

Подставляем полученное выраженеие в ур. 1:

(8)

Полученное ур. 8 – одна из форм записи уравнения Михаэлиса-Ментен. Проанализируем это уравнение. Во многих ферментативных реакциях константа второй стадии k2 значительно меньше констант образования k1 и распада k–1 фермент-субстратного комплекса. В таких случаях константа Михаэлиса приблизительно равна константе равновесия распада комплекса на исходные молекулы:

При большой концентрации субстрата, когда c(S)KМ, константой KМ можно пренебречь, и тогда c(S) в ур. 8 сокращается; при этом скорость принимает максимальное значение:

v макс = k2co(E) (9)

Максимальная скорость зависит от концентрации фермента и не зависит от концентрации субстрата. Это означает, что реакция идет по нулевому порядку относительно субстрата.

При малой концентрации субстрата, когда c(S) KМ, реакция идет по первому порядку относительно субстрата:

v =

Таким образом, при увеличении концентрации субстрата порядок реакции изменяется от первого (область I на рис. 4) до нулевого (область III).

1/2vmax

рис. 4

Уравнение Михаэлиса-Ментен можно записать с использованием максималоной скорости:

(10)

Эта форма уравнения удобна для представления результатов эксперимента, когда не известна концентрация фермента.

Если скорость реакции равна половине максимальной скорости, то из ур. 10 следует, что константа Михаэлиса равна соответствующей концентрации субстрата (рис. 4):

, откуда KM = c'(S)

Для более точного определения константы Михаэлиса графическим методом было предложено преобразование ур. 10 через обратные значения переменных. Меняем местами числитель и знаменатель в ур. 10:

или

Графическое представление уравнения Михаэлиса-Ментен в обратных координатах 1/v – 1/c(S) называют графиком Лайнуивера-Бёрка (рис. 5). Это график прямой линии, которая отсекает на оси 1/v отрезок, равный обратному значению максимальной скорости. Продолжение прямой линии в отрицательную область до пересечения с горизонтальной осью дает отрезок, абсолютное значение которого равно 1/KM. Таким образом, из графика определяются обратные значения параметров 1/v max и 1/KM, а затем и сами параметры.

рис. 5

Есть ферменты, действие которых не строго подчиняется ур. Михаэлиса-Ментен. При высокой концентрации субстрата максимальная скорость достигается, но при низкой концентрации график зависимости v – S принимает так называемый сигмоидный вид. Это означает, что сначала скорость увеличивается с ускорением (выгнутость кривой направлена вниз, см. рис. 6), а затем после точки перегиба скорость увеличивается с замедлением и приближается к максимальной скорости. Это объясняется кооперативным влиянием субстрата при наличии в ферменте нескольких центров связывания. Связывание одной молекулы S способствует связывания второй молекулы на другом центре.

Рис. 6