Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Итоговая - возбудимые ткани.docx
Скачиваний:
140
Добавлен:
16.03.2021
Размер:
1.7 Mб
Скачать
  1. Физиологические и физические свойства мышечной ткани, их характеристика.

Физические свойства скелетных мышц.

1. Растяжимость - способность мышцы изменять свою длину под действием растягивающей ее силы.

2. Эластичность - способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение ее к первоначальным размерам является полным. Эти свойства очень важны для осуществления нормальных функций скелетных мышц.

3. Сила мышцы. Она определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу - максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

4. Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т. к. снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок (закон средних нагрузок).

Физиологические свойства мышц.

• Возбудимость - способность приходить в состояние возбуждения при действии раздражителей.

• Проводимость - способность проводить возбуждение.

• Сократимость - способность мышцы изменять свою длину или напряжение в ответ на действие раздражителя.

• Лабильность - лабильность мышцы равна 200-300 Гц.

  1. Сократимость мышц. Механизм мышечного сокращения и его этапы. Значение саркоплазматического ретикулума. Роль ионов Ca в инициации сокращения. Механизм взаимодействия актиновых и миозиновых нитей.

Сократимость – способность мышцы укорачиваться при возбуждении, в результате чего возникает сила тяги.

Биохимический цикл мышечного сокращения состоит из 5 стадий: 1) миозиновая «головка» может гидролизовать АТФ до АДФ и Н3РО4 (Pi), но не обеспечивает освобождения продуктов гидролиза. Поэтому данный процесс носит скорее стехиометрический, чем каталитический, характер;

2) содержащая АДФ и Н3РО4 миозиновая «головка» может свободно вращаться под большим углом и (при достижении нужного положения) связываться с F-актином, образуя с осью фибриллы угол около 90°;

3) это взаимодействие обеспечивает высвобождение АДФ и Н3РО4 из актин-миозинового комплекса. Актомиозиновая связь имеет наименьшую энергию при величине угла 45°, поэтому изменяется угол миозина с осью фибриллы с 90° на 45° (примерно) и происходит продвижение актина (на 10–15 нм) в направлении центра саркомера;

4) новая молекула АТФ связывается с комплексом миозин–F-актин; Биохимический цикл мышечного сокращения. Объяснение в тексте.

5) комплекс миозин–АТФ обладает низким сродством к актину, и поэтому происходит отделение миозиновой (АТФ) «головки» от F-актина. Последняя стадия и есть собственно расслабление, которое отчетливо зависит от связывания АТФ с актин-миозиновым комплексом. Затем цикл возобновляется.

Саркоплазматический ретикулум (СР) - хорошо развитая высокоспециализированная мембранная сеть, играет ключевую роль в регуляции сократительной активности скелетных, сердечной и гладких мышц. Встроенные в мембраны СР Са-каналы (рианодиновые рецепторы) и Са-АТФаза обеспечивают быстрое освобождение необходимого для мышечного сокращения Са2 + из внутриретикулярного пространства в цитоплазму и его последующую реаккумуляцию.

Ключевая роль в регуляции мышечного сокращения принадлежит ионам кальция (Са2+). Миофибриллы обладают способностью взаимодействовать с АТФ и сокращаться лишь при наличии в среде определенных концентраций ионов кальция. В покоящейся мышце концентрация ионов Са2+ поддерживается ниже пороговой величины при участии Са2+-зависимой АТФазы. В состоянии покоя эта система активного транспорта накапливает кальций в цистернах саркоплазматического ретикулума и трубочках Т-системы.

Мышечное сокращение инициируется приходом потенциала действия на концевую пластинку двигательного нерва. В синапс выделяется ацетилхолин, который связывается с постсинаптическими рецепторами мышечного волокна. Далее потенциал действия распространяется вдоль сарколеммы к поперечным трубочкам Т-системы и происходит передача сигнала на цистерны саркоплазматического ретикулума. Последние начинают освобождать находящийся в них кальций в саркоплазму. Концентрация Са2+ увеличивается с 10–7 до 10–5 ммоль/л. Кальций связывается с Тн-С, что вызывает конформационные сдвиги, передающиеся на тропомиозин и далее - на актин. Открываются закрытые ранее центры в актине для связывания с миозином. Актин взаимодействует с миозином, что инициирует сокращение мышечного волокна.

После прекращения действия двигательного импульса кальций с помощью Са2+-зависимой АТФазы откачивается из цитоплазмы в цистерны саркоплазматического ретикулума. Уход кальция из комплекса с Тн-С приводит к смещению тропомиозина и закрытию активных центров актина. Миозиновая «головка» отсоединяется от актина. Мышца расслабляется.

Кальций является аллостерическим модулятором мышечного сокращения.

В расслабленном состоянии концы актиновых нитей, отходящие от двух последовательных Z-дисков, лишь незначительно перекрываются. Наоборот, в сокращенном состоянии актиновые нити втягиваются внутрь между миозиновыми так сильно, что их концы максимально перекрывают друг друга. При этом Z-диски притягиваются актиновыми нитями к концам миозиновых. Таким образом, мышечное сокращение осуществляется путем механизма скольжения нитей.

  1. Механизм мышечного расслабления

Расслабление мышцы происходит после прекращения поступления длительного нервного импульса. При этом проницаемость стенки цистерн саркоплазматической сети уменьшается, и ионы кальция под действием кальциевого насоса, используя энергию АТФ, уходят в цистерны. Удаление ионов кальция в цистерны ретикулума после прекращения двигательного импульса требует значительных энергозатрат. Так как удаление ионов кальция происходит в сторону более высокой концентрации, т.е. против осмотического градиента, то на удаление каждого иона кальция затрачивается две молекулы АТФ. Концентрация ионов кальция в саркоплазме быстро снижается до исходного уровня. Белки вновь приобретают конформацию характерную для состояния покоя.

  1. Химический и тепловые процессы в мышце при сокращении

Энергия АТФ в скелетной мышце используется для трех процессов:

1) работы натрий-калиевого насоса, обеспечивающего поддержание постоян-

ства градиента концентрации этих ионов по обе стороны мембраны;

2) процесса скольжения актиновых и миозиновых нитей, приводящих к укорочению мио-

фибрилл;

3) работы кальциевого насоса, активируемого при расслаблении волокна.

Расход энергии: на процесс сокращения - 70 %, на процесс расслабления -

15 %, на работу насоса- 5 %, на синтез -10 %.

На одно рабочее движение 1 мостика тратится 1 молекула АТФ. В мышеч-

ном волокне концентрация АТФ равна 4 ммоль/л. Такого запаса энергии доста-

точно для поддержания сокращения не более 1–2 сек. Поэтому должен посто-

янно происходить ресинтез АТФ.

А. Хиллом было установлено, что начальное теплообразование можно разделить на несколько компонентов:

1. Теплота активации — быстрое выделение тепла на ранних этапах мышечного сокращения, когда отсутствуют видимые признаки укорочения или развития напряжения. Теплообразование на этой стадии обусловлено выходом ионов Са2+ из триад и соединением их с тропонином.

2.Теплота укорочения — выделение тепла при совершении работы, если речь идет не об изометрическом режиме. При этом, чем больше совершается механической работы, тем больше выделяется тепла.

3.Теплота расслабления — выделение тепла упругими элементами мышцы при расслаблении. При этом выделение тепла не связано непосредственно с процессами метаболизма.