Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lek_fiziologia.doc
Скачиваний:
249
Добавлен:
20.01.2015
Размер:
1.18 Mб
Скачать

Закон гагена-пуазейля в гемодинамики

Гемодинамика – это раздел науки, изучающий механизмы движения крови в сердечно-сосудистой ситеме. По закону Гагена количество протекающей жидкости через определенный участок трубочки зависит от следующих факторов: 1) от градиента давления (разницы давления в начальной и конечной части трубочки) – чем больше градиент давления, тем больше количество протекающей жидкости; 2) от длины трубочки – чем больше длина трубочки, тем меньше объем протекающей жидкости; 3) от поперечного сечения – отмечается прямая зависимость от радиуса в четвертой степени; 4) от вязкости протекающей жидкости – чем больше вязкость, тем меньше объем протекающей жидкости; 5) от времени – чем больше время, тем больше объем протекающей жидкости. Коофициент пропорциональности при этом соответствует п/8. Сопротивление току жидкости по трубочкам изучал Пуазейль и определил, что сопротивление зависит от следующих факторов: 1) вязкости жидкости, – чем больше вязкость, тем больше сопротивление; 2) от радиуса трубки в четвертой степени – чем больше радиус, тем меньше сопротивление; 3) от длины трубки – чем больше длина трубки, тем больше сопротивление. Коофициент пропорцианальности при этом соответствует 8/п. Таким образом объединяя закономерности Гагена и Пуазейля получаем, что количество жидкости, протекающее через любую трубу (ΔV), прямо пропорционально разности давлений в начале (P1) и в конце (Р2) трубы, времени и обратно пропорционально сопротивлению (R) току жидкости: ΔV = (Р1 – Р2) х t/R. В клинике вместо объема протекающей жидкости используют объемную скорость, то есть объем протекающей крови через определенное сечение сосуда за единицу времени: Q = ΔV/t. С другой стороны следует иметь в виду, что давление в конце данной системы (большого круга кровообращения), то есть в месте впадения полых вен в сердце, близко к нулю. В этом случае закон Гагена-Пуазейля применительно клинике можно записать в виде следующего уравнения: Q = Р/R – количество крови, изгнанное сердцем в минуту прямо пропорционально среднему давлению в аорте и обратно пропорционально величине сосудистого сопротивления. Из этого уравнения следует, что Р = QхR, то есть давление в устье аорты прямо пропорционально МОК и величине периферического сопротивления.

Давление в различных отделах сосудистой системы (рис. 90) зависит от сопротивления. Наименьшим сопротивлением обладает аорта, которая находится ближе к насосу. В аорте самое большое давление – в среднем 100 мм рт.ст. По мере удаления от насоса сопротивление увеличивается и давление падает. Таким образом, давление в различных отделах сосудистой системы обратно пропорциональна сопротивлению: чем больше сопротивление, тем меньше давление. Давление в артериях эластического типа падает плавно. Наибольшее сопротивление току крови оказывают артериолы, так как они богаты мышечным слоем, поэтому наибольший перепад давления отмечается в начальной и конечной части артериол. Начиная с капилляр давление плавно уменьшается до полых вен, где давление отрицательное (ниже атмосферного) и составляет –5 мм рт.ст. Таким образом, градиент давления, обеспечивающее движение крови по сосудам большого круга кровообращения, составляет 100 – (-5) = 105 мм рт.ст. Следует отметить, что системное артериальное давление (отмечаемое в системе артериальных сосудов от аорты до артериол) прямо пропорционально сопротивлению, что вытекает из формулы Гагена-Пуазейля: (Р12) = QхR, где (Р12) – это градиент давления в начале аорты и в начале артериол, то есть среднее давление в артериальной части сосудистой системы. При сокращении мышечного слоя артериол они суживаются и резко увеличивается сопротивление току крови, отток крови из артерий уменьшается, и давление в них повышается, то есть в данном случае между давлением и сопротивлением зависимость прямая: чем больше сопротивление, тем больше давление.

Объемная скорость (количество крови, протекающее через поперечное сечение сосуда за единицу времени), или МОК в различных отделах сосудистой системы не изменяется (рис. 91) и определяется работой сердца (МОК = ЧСС х СОК): через суммарный просвет любой части сосудистой системы за единицу времени проходит одинаковое количество крови (Q1 = Q2 = Q3 = const.). Количество крови, протекающее через сосуд определенной длины, можно определить через поперечное сечение и длины этого сосуда: Q = lхпr2/t. Поперечное сечение обозначим через S, а l/t есть линейная скорость (расстояние, пройденное частицей крови вдоль сосуда за единицу времени) и ее можно обозначить как V. Учитывая, что объемная скорость в различных отделах сосудистой системы есть величина постоянная, мы имеем V1хS1 = V2хS2 = сonst., или V1/S1 = V2/S2, то есть линейная скорость обратно пропорциональна суммарному поперечному сечению сосудов (рис. 91). Наименьшее сечение в аорте и здесь самая большая линейная скорость (0,5 м/с). Наибольшее суммарное сечение в капиллярах (в 600 раз больше сечения аорты) и здесь наименьшая линейная скорость (0,02 м/с). Суммарное сечение полых вен в два раза (две полые вены) больше, чем сечение аорты и линейная скорость в полых венах в два раза меньше (0,25 м/c). Следует отметить, что средняя линейная скорость зависит от суммарного сечения сосудов. В действительности линейная скорость различна для частиц крови, продвигающихся в центре потока (вдоль продольной оси сосуда) и у сосудистой стенки. В центре сосуда линейная скорость максимальна, около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку. Таким образом, линейная скорость в отдельных сосудах зависит от сопротивления, а средняя линейная скорость в различных отделах сосудистой системы зависит от суммарного сечения.

АРТЕРИАЛЬНОЕ ДАВЛЕНИЕ (АД)

АД является одним из ведущих параметров гемодинамики. Основные факторы, влияющие на величину АД, являются объемная скорость (МОК) и периферическое сопротивление: чем больше эти показатели, тем больше АД. Артериальное давление можно измерить двумя способами:

прямой способ, который используется на животных путем введения в артерию стеклянную канюлю, или катетер, соединенного с манометром трубкой с жесткими стенками. Катетер и соединительную трубку заполняют раствором противосвертывающего вещества, чтобы кровь в них не свертывалась. Этим способом можно записать кривую артериального давления. На кривой АД (рис. 92) различают различные волны, отличающиеся по своей амплитуде и частоте (периоду).

Волны первого порядка (пульсовые или систолические) – самые частые (обладают наименьшим периодом). Эти волны образуются за счет повышения давления во время систолы желудочков и уменьшения давления во время диастолы желудочков. Давление, определяемое во время систолы называют систолическим (СД), или максимальным. Давление, определяемое во время диастолы называют диастолическим (ДД), или минимальным. Разность между систолическим и диастолическим давлением называют пульсовым давлением (ПД). Величина ПД влияет на амплитуду волн первого порядка. ПД прямо пропорционально величине сердечного выброса крови из желудочков сердца. В мелких артериях ПД уменьшается, а в артериолах и капиллярах – отсутствует, следовательно, и пульсовые волны в артериолах и капиллярах отсутствуют. Кроме СД, ДД и ПД определяют среднее артериальное давления (САД) – это равнодействующая всех изменений давления в сосудах. Продолжительность понижения давления во время диастолы больше, чем продолжительность повышения давления во время систолы, поэтому САД ближе к величине диастолического. САД в одной и той же артерии представляет собой более постоянную величину, а СД и ДД изменчивы. Зная ДД и ПД, можно определить САД (САД = ДД + 0,3хПД; САД = ДД + 0,42хПД).

Волны второго порядка (дыхательные), так как их колебания зависят от вдоха (понижается давление) и выдоха (повышается давление). Период этих волн больше, чем период волн первого порядка. Одна волна второго порядка включает 3 – 5 волн первого порядка. Эти колебания зависят от тонуса ядра блуждающего нерва: во время вдоха увеличивается тонус вагуса, и отрицательные эффекты вагуса уменьшают МОК, а при выдохе – наоборот, уменьшается тонус вагуса.

Волны третьего порядка – самые редкие (имеют самый длительный период) и низкоамплитудные – они включают несколько волн второго порядка. Эти волны обусловлены периодическими изменениями тонуса сосудодвигательного центра, находящегося в продолговатом мозге.

Косвенный, или бескровный способ определения АД. Для этого используют сфигмоманометр Рива-Роччи. Обследуемому накладывают на плечо полую резиновую манжету, которая соединена с резиновой грушей (для нагнетания воздуха) и с манометром. При надувании манжета сдавливается плечевая артерия, а манометр показывает величину этого давления. Для измерения давления с помощью данного прибора, по предложению Н.С. Короткова, выслушивают сосудистые тоны, возникающие в артерии к периферии от наложенной на плечо манжеты. В несдавленной артерии поток крови ламинарный, поэтому при движении крови звуки отсутствуют. Если после сдавливания просвета плечевой артерии выпускать воздух из манжеты (проводить декомпрессию), кровь с большой скоростью движется через сдавленный участок и ударяется о стенку артерии и это порождает звук, слышимый ниже манжеты. Кроме этого первый звук Н.С. Короткова обусловлен турбулентным движением крови. Давление в манжете, при котором появляются первые звуки Н.С. Короткова, соответствует СД. При дальнейшем снижении давления в манжете, просвет исчезает и артерия занимает свой первоначальный диаметр и турбулентное движение крови переходит в ламинарный поток, что приводит к исчезновению звуков. Давление в манжете в момент исчезновения звуков в артерии соответствует величине ДД. У взрослого человека СД равно 110-125 мм рт.ст. Значительное снижение давления происходит в мелких артериях, артериолах и капиллярах. В артериальном конце капилляра давление равно 20-30 мм рт.ст. У новорожденных СД составляет 50 мм рт.ст. и к концу первого месяца жизни составляет 80 мм рт.ст. ДД у взрослых равно 60-80 мм рт.ст., ПД составляет 35-50 мм рт.ст., а среднее – 90-95 мм рт.ст.

Соседние файлы в предмете Нормальная анатомия