Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2.doc
Скачиваний:
20
Добавлен:
15.06.2014
Размер:
375.81 Кб
Скачать

Вопрос 18

Мат. ожидание Н.С.В. Х, возможные значения которой принадлежат всей оси ОХ, определяется равенством: М(Х)=интеграл от –бесконечности до бесконечности хf(x)dx, где f(x) - плотность распределения С.В. Х. Предполагается, что интеграл сходится абсолютно. В частности, если все возможные значения принадлежат интервалу (а,b), то М(Х)=интеграл от а до b xf(x)dx. Все свойства мат. ожидания, указаны выше, для Д.С.В. Они сохраняются и для Н.С.В.

Дисперсия Н.С.В. Х, возможные значения которой принадлежат всей оси ОХ, определяется равенством: D(X)=интеграл от –бесконечности до бесконечности [x-M(X)]*2f(x)dx, или равносильным равенством: D(X)=интеграл от –бесконечности до бесконечности x*2f(x)dx – [M(X)]*2. В частности, если все возможные значения х принадлежат интервалу (a,b),то D(X)=интервал от а до b [xM(X)]*2f(x)dx,или D(X)=интеграл от

Вопрос 19

Моменты распределения. При решении многих практических задач нет особой необходимости в полной вероятностной характеристике каких-либо случайных величин, которую дает функция плотности распределения вероятностей. Очень часто приходится также иметь дело с анализом случайных величин, плотности вероятностей которых не отображаются аналитическими функциями либо вообще неизвестны. В этих случаях достаточно общее представление о характере и основных особенностях распределения случайных величин можно получить на основании усредненных числовых характеристик распределений.

Числовыми характеристиками случайных величин, которые однозначно определяются функциями распределения их вероятностей, являются моменты.

Начальные моменты n-го порядка случайной величины X (или просто моменты) представляют собой усредненные значения n-й степени случайной переменной: mn  М{Xn} =xn p(x) dx, где M{Xn} и - символические обозначенияматематического ожидания и усреднения величины Хn, которые вычисляются по пространству состояний случайной величины Х.

Соответственно, для случайных дискретных величин: mn  М{Xn} =xin pi.

Центральные моменты n-го порядка, это моменты относительно центров распределения (средних значений) случайных величин:

n  M{(X-)n} =(x-m1)n p(x) dx

n  M{(X-)n} =(xi-m1)n pi, где - начальный момент 1-го порядка (среднее значение величины Х), X0 = X-- центрированные значения величины Х.

Связь между центральными и начальными моментами достаточно проста:

1=0, 2=m2-m12, 3=m3-3m2m1+2m13, 4=m4-4m1m3+6m12m2-3m14, и т.д.

Соответственно, для случайных величин с нулевыми средними значениями начальные моменты равны центральным моментам.

По результатам реализации случайных величин может производиться только оценка моментов, т.к. количество измерений всегда конечно и не может с абсолютной точностью отражать все пространство состояний случайных величин. Результаты измерений - выборка из всех возможных значений случайной величины (генеральной совокупности). Оценка моментов, т.е. определение средних значений n-й степени по выборке из N зарегистрированных значений, производится по формулам: = (1/N)xin, = (1/N)(xi-)n

Соседние файлы в предмете Теория вероятностей и математическая статистика
  • #
    15.06.2014120.83 Кб131.doc
  • #
    15.06.2014772.88 Кб61.tif
  • #
    15.06.20142.22 Mб921_laba.xls
  • #
    15.06.2014375.81 Кб202.doc
  • #
    15.06.20142.34 Mб755_laba.xlsx
  • #
    15.06.20148.86 Кб506 laba.xlsx
  • #
    15.06.2014855.19 Кб507_laba.xlsx
  • #
    15.06.20141.23 Mб60laba_4.xlsx
  • #
    15.06.2014873.41 Кб82MS-KonspektLektsy.pdf