Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Cosmology. The Origin and Evolution of Cosmic Structure - Coles P., Lucchin F

..pdf
Скачиваний:
77
Добавлен:
24.05.2014
Размер:
3.55 Mб
Скачать

478 References

Olbers HWM 1826 Uber die Durchsichtigheit des Weltraumes. In Astronomische Jahrbuch fur das Jahr 1826 (ed. Bode JE). Spathen, Berlin. (English translation: Olbers HWM 1826 On the transparency of space. Edinb. New Phil. J. 1, 141.)

Olive KA and Scully S 1995 The deuterium abundance and nucleocosmochronology. Astrophys. J. 446, 272–278.

Olive KA and Schramm DN 1992 Astrophysical Li-7 as a Product of Big-Bang nucleosynthesis and galactic cosmic ray spallation. Nature 360, 439–442.

Olive KA and Steigman G 1995 On the abundance of primordial helium. Astrophys. J. Suppl. 97, 49–58.

Ostriker JP and Cowie LL 1981 Galaxy formation in an inter-galactic medium dominated by explosions. Astrophys. J. 243, L127–L131.

Ostriker JP and Suto Y 1990 The Mach number of the cosmic flow: a critical test for current theories. Astrophys. J. 348, 378–382.

Ostriker JP and Vishniac ET 1986 Reionization and small-scale fluctuations in the microwave background. Astrophys. J. 306, L5–L8.

Paczynski B 1986a Gravitational microlensing at large optical depth. Astrophys. J. 301, 503–516.

Paczynski B 1986b Gravitational microlensing by the galactic halo. Astrophys. J. 304, 1–5. Padmanabhan T 1993 Structure formation in the Universe. Cambridge University Press. Pagel BEJ et al. 1992 The primordial helium abundance from observations of extragalactic

H-II regions. Mon. Not. R. Astr. Soc. 255, 325–345.

Partridge RB 1988 The angular distribution of the cosmic microwave background radiation. Rep. Prog. Phys. 51, 647–706.

Peacock JA 1992 Statistics of cosmological density fields. In New insights into the Universe (ed. Martinez VJ, Portilla M and Saez D). Springer, Berlin.

Peacock JA 1999 Cosmological physics. Cambridge University Press.

Peacock JA and Dodds S 1994 Reconstructing the linear power spectrum of cosmological mass fluctuations. Mon. Not. R. Astr. Soc. 267, 1020–1034.

Peacock JA and Dodds S 1996 Non-linear evolution of cosmological power spectra. Mon. Not. R. Astr. Soc. 280, L19–L26.

Peacock JA et al. 2001 A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey. Nature 410, 169–173.

Peebles PJE 1971 Physical cosmology. Princeton University Press.

Peebles PJE 1980 The large-scale structure of the Universe. Princeton University Press. Peebles PJE 1986 The mean mass density of the Universe. Nature 321, 27–32.

Peebles PJE 1987 Cosmic background temperature anisotropy in a minimal isocurvature model for galaxy formation. Astrophy. J. 315, L73–L76.

Peebles PJE 1993 Principles of physical cosmology. Princeton University Press.

Peebles PJE 1999 An isocurvature cold dark matter cosmogony. I. A worked example of evolution through inflation. Astrophys. J. 510, 523–530.

Peebles PJE and Yu JT 1970 Primeval adiabatic perturbations in an expanding universe.

Astrophys. J. 162, 815–836.

Peebles PJE, Schramm DN, Turner EL and Kron RG 1991 The case for the hot relativistic Big Bang cosmology. Nature 352, 769–776.

Penzias AA and Wilson RW 1965 Measurement of excess antenna temperature at 4080 Mc/sec. Astrophys. J. 142, 419–421.

Perlmutter S et al. 1999 Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586.

References 479

Pierpaoli E, Coles P, Bonometto SA and Borgani S 1996 Large-scale structure in mixed dark matter models with a non-thermal volatile component. Astrophys. J. 470, 92–101.

Plionis M, Coles P and Catelan P 1993 The QDOT and cluster dipoles: evidence for a low-Ω0 universe? Mon. Not. R. Astr. Soc. 262, 465–474.

Press WH and Schechter P 1974 Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation. Astrophys. J. 187, 425–438.

Randall L and Sundrum R 1999 An alternative to compactification. Phys. Rev. Lett. 83, 4690–4693.

Raychaudhuri AK 1979 Theoretical cosmology. Oxford University Press.

Rees MJ 1986 Lyman absorption lines in quasar spectra: evidence for gravitationallyconfined gas in dark minihalos. Mon. Not. R. Astr. Soc. 218, 25P–30P.

Rees MJ and Ostriker JP 1977 Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters. Mon. Not. R. Astr. Soc. 179, 541– 559.

Rees MJ and Sciama DW 1968 Large-scale density inhomogeneities in the Universe. Nature 217, 511–516.

Refsdal S 1964 The gravitational lens e ect. Astrophys. J. 128, 295–306.

Ribeiro MB 1992 On modeling a relativistic hierarchical (fractal) cosmology by Tolman’s spacetime. Astrophys. J. 395, 29–33.

Riess AG, Press WH and Kirshner RP 1995 Using Type Ia supernova light-curve shapes to measure the Hubble constant. Astrophys. J. 438, L17–L20.

Riess AG et al. 1998 Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astr. J. 116, 1009–1038.

Rood HJ 1988 Voids. A. Rev. Astr. Astrophys. 26, 245–294. Roos M 1994 Introduction to cosmology. Wiley, Chichester.

Rowan-Robinson M 1985 The cosmological distance ladder: distance and time in the Universe. Freeman, New York.

Rowan-Robinson M et al. 1990 A sparse-sampled redshift survey of IRAS galaxies. I. The convergence of the IRAS dipole and the origin of our motion with respect to the Local Group. Mon. Not. R. Astr. Soc. 247, 1–18.

Rubin VC and Coyne GV (eds) 1988 Large-scale motions in the Universe. Princeton University Press.

Rugers M and Hogan CJ 1996a High deuterium abundance in a new quasar absorber. Astr. J. 111, 2135–2140.

Rugers M and Hogan CJ 1996b Confirmation of high deuterium abundance in quasar absorbers. Astrophys. J. 459, L1–L4.

Rybicki GB and Lightman AP 1979 Radiative processes in astrophysics. Wiley, New York. Sachs RK and Wolfe AM 1967 Perturbations of cosmological model and angular variations

of the microwave background. Astrophys. J. 147, 73–90.

Sahni V and Coles P 1995 Approximation methods for non-linear gravitational clustering.

Phys. Rep. 262, 1–136.

Sahni V, Sathyaprakash BS and Shandarin SF 1997 Probing large-scale structure using percolation and genus curves. Astrophys. J. 477, L1–L5.

Sahni V, Sathyaprakash BS and Shandarin SF 1998 Shapefinders: a new diagnostic for large-scale structure. Astrophys. J. 495, L5–L8.

Sakharov AD 1966 The initial stage of an expanding Universe and the appearance of a nonuniform distribution of matter. Sov. Phys. JETP 22, 241–249.

Salam A 1968 Weak and electromagnetic interactions. In Elementary particle physics (ed. Swartholm N). Almquist and Wiksells, Stockholm.

480 References

Sandage A 1961 The ability of the 200-inch telescope to discriminate between selected world models. Astrophys. J. 133, 355–392.

Sandage A 1968 Observational cosmology. Observatory 88, 91–106.

Sandage A 1970 Cosmology: the search for two numbers. Phys. Today 23, 34–43. Sandage A 1972 Distances to galaxies, the Hubble constant and the edge of the world. Q.

J. R. Astr. Soc. 13, 282–296

Sandage A 1988 Observational tests of world models. A. Rev. Astr. Astrophys. 26, 561–630. Sandvik HB, Barrow JD and Magueijo J 2002 A simple cosmology with a varying fine-

structure constant. Phys. Rev. Lett. 8803, 031302.

Saslaw WC 1985 Gravitational physics of stellar and galactic systems. Cambridge University Press.

Schneider P, Ehlers J and Falco EE 1992 Gravitational lenses. Springer, Berlin. Schramm DN and Turner MS 1996 Deuteronomy and numbers. Nature 381, 193–194.

Schramm DN and Wagoner RV 1979 Element production in the early Universe. A. Rev. Nucl. Part. Sci. 27, 37–74.

Sciama DW 1993 Modern cosmology and the dark matter problem. Cambridge University Press.

Scoccimarro R, Couchman HMP and Frieman JA 1999 The bispectrum as a signature of gravitational instability in redshift space. Astrophys. J. 517, 531–540.

Scully S et al. 1996 The local abundance of 3He: a confrontation between theory and observation. Astrophys. J. 462, 960–968.

Seljak U and Zaldarriaga M 1996 A line-of-sight approach to cosmic microwave background anisotropies. Astrophys. J. 469, 437–444.

Shandarin SF 1983 Percolation theory and the cell-lattice structure of the Universe. Sov. Astr. Lett. 9, 100–102.

Shandarin SF and Zel’dovich YaB 1989 The large-scale structure of the Universe: turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys. 61, 185– 220.

Shane CD and Wirtanen A 1967 The distribution of galaxies. Publ. Lick. Obs. 22, 1–60. Shanks T, Hale-Sutton D, Fong R and Metcalfe N 1989 An extended Galaxy redshift survey.

III. Constraints on large-scale structure. Mon. Not. R. Astr. Soc. 237, 589–610.

Shapley H and Ames A 1932 A survey of the external galaxies brighter than the 13th magnitude. Ann. Harvard College Obs. 88, 41–75.

Signore M and Dupraz C (eds) 1992 The infra-red and submillimetre sky after COBE. Kluwer, Dordrecht.

Silk J 1967 Fluctuations in the primordial fireball. Nature 215, 1155–1156

Silk J 1968 Cosmic black-body radiation and galaxy formation. Astrophys. J. 151, 459–471. Skillman ED et al. 1993 New results of He measurements: implications for SBBN Ann. NY

Acad. Sci. 688, 739–744.

Slipher VM 1914 Spectrographic observations of nebulae. Paper presented at the 17th Meeting of the American Astronomical Society. A short summary can be found in 1915

Popular Astron. 23, 21.

Smail I, Couch WJ, Ellis RS and Sharples RM 1995 Hubble Space Telescope measurements of gravitationally lensed features in the rich cluster AC-114. Astrophys. J. 440, 501–509.

Smith MS, Kawano LH and Malaney RA 1993 Experimental, computational and observational analysis of primordial nucleosynthesis. Astrophys. J. Suppl. 85, 219–247.

Smoot GF et al. 1992 Structure in the COBE di erential microwave radiometer first year maps. Astrophys. J. 396, L1–L5.

References 481

Songaila A, Cowie LL, Hogan CJ and Rugers M 1994 Deuterium abundance and background radiation temperature in high redshift primordial clouds. Nature 368, 599–604.

Spite M, Francois P, Nissen PE and Spite F 1996 Spread of the lithium abundance in halo stars. Astr. Astrophys. 307, 172–183.

Starobinsky AA 1979 Spectrum of relict gravitational radiation and the early state of the Universe. JETP Lett. 30, 682–685.

Starobinsky AA 1982 Dynamics of phase transitions in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175–178.

Stau er D and Aharony A 1992 Introduction to percolation theory. Taylor & Francis, London.

Steidel CC, Giavilisco M, Pettini M, Dickinson M and Adelberger KL 1996 Spectroscopic confirmation of a population of normal star-forming galaxies at redshifts z > 3. Astrophys. J. 462, L17–L21.

Steigman G 1994 Cosmic deuterium or a hydrogen interloper? Mon. Not. R. Astr. Soc. 269, L53–L54.

Steigman G and Tosi M 1995 Generic evolution of deuterium and He-3. Astrophys. J. 453, 173–177.

Steigman G, Fields B, Olive KA, Schramm DN and Walker TP 1993 Population-II Li-6 as a probe of nucleosynthesis and stellar structure and evolution. Astrophys. J. 415, L35– L38.

Stirling AJ and Peacock JA 1996 Power correlations in cosmology: limits on primordial non-Gaussian density fields. Mon. Not. R. Astr. Soc. 283, L99–L104.

Strauss MA and Willick JA 1995 The density and peculiar velocity fields of nearby galaxies.

Phys. Rep. 261, 271–431.

Sunyaev RA and Zel’dovich YaB 1969 The observation of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies. Commun. Astrophys. Space Phys. 4, 173–178.

Sunyaev RA and Zel’dovich YaB 1970 Small-scale fluctuations of relic radiation. Astrophys. Space Sci. 7, 3–19.

Taylor JH, Fowler LA and Weisberg JM 1979 Measurements of general relativistic e ects in the binary pulsar PSR1913+16. Nature 277, 437–440.

Thorne KS 1987 Gravitational radiation. In 300 years of gravitation (ed. Hawking SW and Israel W), pp. 331–458. Cambridge University Press.

Thorne KS, Price RH and Macdonald DA 1986 Black holes: the membrane paradigm. Yale University Press, London and New Haven.

Tolman RC 1934 E ect of inhomogeneity on cosmological models. Proc. Nat. Acad. Sci. 20, 169–176.

Totsuji H and Kihara T 1969 The correlation function for the distribution of galaxies. Publ. Astr. Soc. Jap. 21, 221–229.

Trimble V 1987 Existence and nature of dark matter in the Universe. A. Rev. Astr. Astrophys. 25, 425–472.

Turner EL 1990 Gravitational lensing limits on the cosmological constant in a flat universe.

Astrophys. J. 365, L43–L46.

Turner EL, Ostiker JP and Gott III JR 1984 The statistics of gravitational lenses – the distributions of image angular separations and lens redshifts. Astrophys. J. 284, 1–22.

Tyson JA 1988 Deep CCD survey – galaxy luminosity and color evolution. Astr. J. 96, 1–23. Tyson JA and Seitzer P 1988 A deep CCD survey of 12 high latitude fields. Astrophys. J.

335, 552–583.

482 References

Tyson JA, Valdes F and Wenk RA 1990 Detection of systematic gravitational lens galaxy image alignments – mapping dark matter in galaxy clusters. Astrophys. J. 349, L1–L4.

Tytler D, Fan X-M and Burles S 1996 Cosmological baryon density derived from the deuterium abundance at redshift z = 3.57. Nature 381, 207–209.

van Waerbeke L et al. 2000 Detection of correlated galaxy ellipticities from CFHT data: first evidence for gravitational lensing by large-scale structures. Astr. Astrophys. 358, 30–44.

Vanmarcke EH 1983 Random fields, analysis and synthesis. MIT Press, Cambridge, MA. Viana PTP and Liddle AR 1996 The cluster abundance in flat and open cosmologies. Mon.

Not. R. Astr. Soc. 281, 323–332.

Vilenkin A 1984 Quantum gravity of universes. Phys. Rev. D 30, 509–511.

Vilenkin A 1986 Boundary conditions in quantum cosmology. Phys. Rev. D 33, 3560–3569. Vittorio N and Silk J 1984 Fine-scale anisotropy of the cosmic microwave background in

a universe dominated by cold dark matter. Astrophys. J. 285, L39–L43.

Vittorio N and Turner MS 1987 The large-scale peculiar velocity field in flat models of the Universe. Astrophys. J. 316, 475–482.

Vittorio N, Juszkiewicz R and Davis M 1986 Large-scale velocity fields as a test of cosmological models. Nature 323, 132–133.

Wald RM 1984 General relativity. The University of Chicago Press.

Walker TP, Steigman G, Schramm DN, Olive KA and Kang KS 1991 Primordial nucleosynthesis redux. Astrophys. J. 376, 51–69.

Walker TP, Steigman G, Schramm DN, Olive KA and Fields B 1993 The boron-to-beryllium ratio in halo stars – a signature of cosmic ray nucleosynthesis in the early galaxy. Astrophys. J. 413, 562–570.

Walsh D, Carswell RF and Weymann RJ 1979 0957 + 561A,B: twin quasistellar objects or gravitational lens? Nature 379, 381–384.

Wampler EJ et al. 1996 High resolution observations of the QSO BR 1202-0725, deuterium and ionic abundances at redshifts above z = 4. Astr. Astrophys. 316, 33–42.

Weinberg S 1967 A model of Leptons. Phys. Rev. Lett. 19, 1264–1266.

Weinberg S 1971 Entropy generation and the survival of protogalaxies in an expanding universe. Astrophys. J. 168, 175–194.

Weinberg S 1972 Gravitation and cosmology: principles and applications of the general theory of relativity. Wiley, New York.

Weinberg S 1988 The cosmological constant problem. Rev. Mod. Phys. 61, 1–23. Weinberg DH and Cole S 1992 Non-Gaussian fluctuations and the statistics of galaxy clus-

tering. Mon. Not. R. Astr. Soc. 259, 652–694.

White SDM 1979 The hierarchy of correlation functions and its relation to other measures of galaxy clustering. Mon. Not. R. Astr. Soc. 186, 145–154.

White SDM, Frenk CS and Davis M 1983 Clustering in a neutrino dominated universe.

Astrophys. J. 274, L1–L5.

White SDM, Briel UG and Henry IP 1993a X-ray archaeology of the Coma cluster. Mon. Not. R. Astr. Soc. 261, L8–L11.

White SDM, Navarro JF, Evrard AE and Frenk CS 1993b The baryon content of galaxy clusters: a challenge to cosmological orthodoxy. Nature 366, 429–433.

White M, Scott D and Silk J 1994 Anisotropies in the cosmic microwave background. A. Rev. Astr. Astrophys. 32, 319–370.

White M, Gelmini G and Silk J 1995 Structure formation with decaying neutrinos. Phys. Rev. D 51, 2669–2676.

References 483

Wilson ML 1983 On the anisotropy of the cosmological background matter and radiation distribution. II. The radiation anisotropy in models with negative spatial curvature.

Astrophys. J. 273, 2–15.

Wilson ML and Silk J 1981 On the anisotropy of the cosmological background matter and radiation distribution. I. The radiation anisotropy in a spatially flat universe. Astrophys. J. 243, 14–25.

Wilson G, Kaiser N and Luppino GA 2001 Mass and light in the Universe. Astrophys. J. 556, 601–618.

Wittman DM, Tyson JA, Kirkman D, Dell’Antonio I and Berstein G 2000 Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales. Nature 405, 143–148.

Wolfe AM 1993 The progenitors of galaxies and the gas content of the universe at large redshifts. Ann. NY Acad. Sci. 688, 281–296.

Wolfe AM, Turnshek DA, Lanzetta KM and Lu L 1993 Damped Lyman-alpha absorption by disk galaxies with large redshifts. IV. More intermediate-resolution spectroscopy.

Astrophys. J. 404, 480–510.

Wright EL and Reese ED 2000 Detection of the cosmic infrared background at 2.2 and 3.5 microns using DIRBE observations. Astrophys. J. 545, 43–55.

Wright EL et al. 1992 Interpretation of the CMBR anisotropy detected by the COBE di erential microwave radiometer. Astrophys. J. 396, L7–L12

Wyse RG and Jones BJT 1985 The ionisation of the primeval plasma at the time of recombination. Astr. Astrophys. 149, 144–150.

Zel’dovich YaB 1965 Survey of modern cosmology. Adv. Astr. Astrophys. 3, 241–379. Zel’dovich YaB 1970 Gravitational instability: an approximate theory for large density

perturbations. Astr. Astrophys. 5, 84–89.

Zel’dovich YaB 1972 A hypothesis unifying the structure and the entropy of the Universe.

Mon. Not. R. Astr. Soc. 160, 1P–3P.

Zel’dovich YaB and Barenblatt G 1958 The asymptotic properties of self-modelling solutions of the non-stationary gas filtration equations. Sov. Phys. Dokl. 3, 44–47.

Zel’dovich YaB and Novikov ID 1983 The structure and evolution of the Universe. University of Chicago Press.

Zwicky F 1952 Morphological astronomy. Springer, Berlin.

Zwicky F, Herzog E, Wild P, Karpowicz M and Kowal CT 1961–1968 Catalogue of galaxies and clusters of galaxies, 6 vols. California Institute of Technology, Pasadena.

Index

τCDM, 332 ΛCDM, 332, 391

2dF Galaxy Redshift Survey, 75, 404–406, 451

Abell clusters, 73, 350, 389 aberration, 372

absolute magnitude, 20, 68 absorption line systems, 430–432 acoustic oscillations, 329, 330 acoustic peaks, 456

acoustic waves, 239, 248, 260, 328 active galactic nuclei (AGN), 71, 433, 435,

448

adhesion model, 294–296 adiabatic, 230, 235, 328 adiabatic expansion, 113

adiabatic invariants, 214, 215, 219 adiabatic perturbations, 140, 213, 221,

230–231, 248, 324, 375 adiabatic sound speed, 231

age of the Universe, 38, 61, 83–86 age problem, 152

ages of globular clusters, 86 Andromeda, 73, 451

angular correlation function, 341 angular diameter, 97, 98, 448 angular momentum, 318, 440 angular power spectrum, 368–371 angular-diameter distance, 19, 414 angular-diameter–redshift test, 95

Anthropic Cosmological Principle, 164 APM galaxies, 406

apparent magnitude, 20, 68 astration, 182

Atacama Large Millimetre Array (ALMA), 455

atmospheric neutrinos, 176 autocovariance function, 369, 371, 379 automatic plate measuring (APM), 74, 363

autosolution, 223 axions, 91, 252, 325

Balmer series, 112

baryon asymmetry, 115, 116, 140, 142, 143, 160, 170

baryon number, 169

baryons, 110, 115, 134, 139, 140, 167, 171, 251, 467

baryosynthesis, 116, 140, 142 Baunt–Morgan e ect, 82 BBGKY hierarchy, 348, 403 beam-switching, 370

Bianchi models, 52–55 bias, 338, 367

biased galaxy formation, 93, 280, 314–318, 352

Big Bang, 51, 101, 122, 138, 212

Big Bang singularity, 35, 36, 119–122, 148 Big Crunch, 36, 47

binary pulsar, 459

Birkho ’s theorem, 24, 26, 223 bispectrum, 356, 358, 359

BL Lac objects, 71

black holes, 91, 125, 277 black-body, 125

radiation, 193 spectrum, 102, 197–199

Bloch walls, 141 blue supergiants, 80

bolometric luminosity, 68 Boltzmann equation, 252–253, 381 Boomerang, 104, 391

bosons, 131, 132, 134, 135, 168, 253 braneworld, 129

Brans–Dicke theory, 61–64, 163 bremsstrahlung, 434

brightest cluster galaxies, 80 brightness function, 245, 381 brown dwarfs, 91

486 Index

bubble nucleation, 158, 160 bulk flows, 398–400

bulk viscosity, 120, 121 bull’s-eye e ect, 404 Burgers equation, 295

C-field, 58

Cabibbo mixing, 175 caustics, 290, 293, 294, 417 CDM model, 316, 406 Centaurus, 92

Center for Astrophysics (CfA), 363 central limit theorem, 279, 364 Cepheid variables, 454

CfA survey, 75

Chandra, 433, 449, 450, 455 chaotic inflation, 161–162, 164, 165 CHDM, 332

chemical potential, 131, 140, 168–171, 179, 186, 194, 199

Christo el symbols, 6 Classical Cepheids, 80 classical cosmology, 94–100 closed universe, 40, 152

cloud-in-cloud problem, 302, 303 cluster expansion, 283

clusters of galaxies, 86, 89–92, 144, 248 CMBFAST, 381

COBE, 102, 103, 164, 198–200, 261, 318, 321, 328, 339, 367, 368, 371, 377–380, 386, 406, 435, 459

cold dark matter (CDM), 258, 260–261, 308, 316, 326, 328–330

universe, 262 colour, 134, 135

Coma cluster, 73, 89–91, 319 comoving coordinates, 9, 14 Compton, 124

length, 125 radius, 124, 132

scattering, 193, 196, 199, 200 time, 124, 125

conformal time, 13, 394 Constellation-X, 450 continuity, 393

equation, 207, 294 contravariant, 7 cooling, 310–312

Copernican Principle, 4, 164, 165 correlation dimension, 351

correlation functions, 339–342, 344–346

cosmic explosion, 285 cosmic horizon, 260 cosmic Mach number, 400

cosmic microwave background (CMB), 86, 100–104, 142, 164, 173–177, 213, 278

cosmic neutrino background, 173, 174 cosmic no-hair theorem, 159

cosmic scale factor, 9, 17 cosmic strings, 144, 252, 385

scenario, 285 cosmic turbulence, 213

cosmic variance, 338, 369

cosmic virial theorem, 316, 403, 406 cosmic web, 432

cosmological constant, 9, 26–28, 30, 38, 48–49, 64, 95, 119, 121, 122, 142, 143, 146, 147, 152, 159, 160, 164, 221 problem, 145–147

cosmological flatness problem, 152–155 cosmological horizon, 45–47, 122, 125,

141, 142, 148–150, 233, 248, 271, 274, 275

problem, 147–151 cosmological model, 109

cosmological neutrino background, 87 Cosmological Principle, 3–5, 9, 14, 15, 20,

25, 33, 51, 52, 56, 57, 67, 75, 93, 94, 119, 142, 143, 147, 148, 164, 165, 207, 338

COSMOS, 74

counts in cells, 352–354 covariance functions, 280, 281, 340 covariant, 7

covariant derivative, 8, 58

critical density, 13, 78, 83, 152, 176 cumulants, 282

Curie temperature, 136

damped Lyman-α systems, 430, 431, 443 dark matter, 86, 110, 142, 229, 251, 323,

383

de Sitter universe, 28, 159 Debye radius, 192 deceleration parameter, 17–18 decoupling, 112, 114, 117 deficiencies of SCDM, 334 degeneracy, 168

parameters, 170, 178 density of the Universe, 86–92

density parameter 0, 13, 30, 44, 83, 84, 86–87, 155, 185, 288

deuterium, 180, 182–184 deuterium bottleneck, 180

de Sitter universe, 46

di erential microwave radiometer (DMR), 377–379

di erential visibility, 196 dipole anisotropy, 103, 371, 373 Dirac charge, 143

Dirac hypothesis, 61 DIRBE, 437

discs, 443

dispersion relation, 208, 242 dissipation, 236, 237, 239

mass, 235

of acoustic waves, 234–237

of adiabatic perturbations, 237–239 scale, 235

distance ladder, 79–83 distance modulus, 20 domain walls, 143–145, 159

Doppler e ect, 17, 103, 240, 372 Doppler peak, 382–384

double quasar, 419 dust, 34, 37, 110

dust models, 34, 40–43 dynamical parallax, 79

e ective width, 196 Einstein equations, 23 Einstein radius, 415, 418 Einstein tensor, 8 Einstein universe, 27, 28 Einstein–de Sitter, 221

universe, 36, 37, 39, 45, 214, 226, 233, 261, 287, 289, 395, 406, 419, 441

Ekpyrotic universe, 129 electric charge, 169

electromagnetic interactions, 133, 134, 169 electroweak interactions, 134, 139, 140 elliptical galaxies, 69, 70, 88, 320 energy–momentum tensor, 7, 12, 23, 27,

33, 53, 58, 61, 121, 146, 157, 158, 227 entropy per baryon, 111, 140

equation of state, 30, 46, 113 eternal inflation, 162 Euclidean space, 10, 11, 19

Euler equation, 120, 207, 294, 393, 394 Euler–Poincaré characteristic, 361, 364 event horizon, 47, 277

evolution, 100

expansion of the Universe, 142, 150 expansion parameter, see also cosmic scale

factor, 14

Index 487

exponential inflation, 151 extended inflation, 63, 163

Faber–Jackson relation, 81

Far-Infrared Space Telescope (FIRST), 454, 455

fermions, 131, 132, 134, 168, 253 ferromagnetism, 136

Fick’s law, 235

filaments, 294, 296, 339, 366 fine-structure constant, 63, 463 FIRAS, 198, 377, 435

first-order phase transition, 137–139, 160 flatness, 143, 162

flatness problem, 45, 152, 155, 163 flavour, 135

flicker-noise spectrum, 275 fractal sets, 350

fractal structure, 351 fractal Universe, 55 fractionation, 182 free energy, 137–139

free streaming, 206, 212, 235, 247, 256 Friedmann equations, 13, 23–24, 26, 109,

116, 125, 129, 150, 152, 153, 158, 220, 223

Friedmann models, 33, 36, 46, 47, 52, 53, 55, 62, 67, 77, 83, 110, 122, 148, 149, 159, 213, 223, 337

GAIA, 450–452 galactic coordinates, 68 galactic evolution, 99

galaxies, 20, 69–70, 88–89, 92, 142, 144 galaxy clustering, 337, 338

galaxy clusters, 20, 91

galaxy formation, 438–444, 448 gauge-invariant, 227 Gauss–Bonnet theorem, 361–363

Gaussian curvature, 10, 12, 362–364 Gaussian density perturbations, 279–280 Gaussian filter, 269–271

Gaussian random field, 279, 328, 364, 395 general relativity, 124

general theory of relativity, 3, 6, 8, 12, 25, 26, 51, 55, 64, 109, 119, 127, 135, 142, 177, 228, 409

genus, 361, 362 GEO, 459 geodesic, 6 giant arcs, 417

globular clusters, 80, 84, 176

Соседние файлы в предмете Астрономия