Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭДС.doc
Скачиваний:
3
Добавлен:
27.11.2019
Размер:
5.69 Mб
Скачать

Введение.

Учебно-методическая разработка составлена в помощь студентам Иркутского Медицинского Университета, изучающим физическую и биофизическую химию.

Она необходима для подготовки к лекциям и лабораторным работам, к коллоквиумам, зачетам и экзамену.

Методическая разработка состоит из двух частей: теоретической и экспериментальной, в которой студентам предлагается выполнить ряд лабораторных работ по данной теме.

Лабораторная работа только тогда имеет смысл, когда она проводится с пониманием эксперимента. Поэтому описанию работ предшествует рассмотрение теоретических основ изучаемой темы.

Такое теоретическое введение необходимо, что бы с минимальной затратой времени проработать вопросы теории, ответить на предлагаемые вопросы, решить задачи, которые приводятся в методической разработке каждого занятия.

Большое внимание уделяется решению задач, которые помогают проверить усвоение материала, а так же развивают способности применять теоретические знания к решению вопросов в медицинской практике.

Работая в физико-химической лаборатории, студент знакомится с устройством соответствующих приборов, которые широко используются в клинических, биохимических, фармацевтических и санитарно-гигиенических лабораториях.

По окончании работы студент должен представить преподавателю для проверки отчет по следующей форме:

  1. Дата.

  2. Название работы.

  3. Значение темы лабораторного занятия для изучения других дисциплин и практической деятельности.

  4. Цель занятия.

  5. Ход работы.

  6. Экспериментальные данные.

  7. Необходимые вычисления, графики.

  8. Возможные ошибки измерений и наблюдений. Расчет ошибки.

  9. Выводы.

Электронные потенциалы и электродвижущие силы. Потенциометрия.

  1. Значение темы.

Все процессы жизнидетельности организмов сопровождаются появлениям в клетках и тканях электродвижущих сил. Электрические явления играют большую роль в важнейших физиологических процессах: возбуждении клеток и проведении возбуждения по клеткам. Многие биологические процессы, такие, как переработка и усвоение питательных продуктов, передача сигналов нервной системы, механизм зрительного восприятия включают в себя стадии, характеризующиеся электрохимическими явлениями.

В организме имеются специальные вещества – ферменты, которые и осуществляют в клетках в определенном порядке стадии химического превращения питательных веществ. Комплексы различных веществ собраны и укреплены на мембранах клеток. Эти мембраны как бы выполняют роль электродов в гальванических элементах, а электролитами служат биологические жидкости, хорошо проводящие ток. При изучении моделей биомембран неожиданно обнаружили, что при сочетании липидных бислойных мембран и границы двух несмешивающих жидкостей, многие мембранные ферменты являются молекулярными генераторами тока.

А что такое распространение нервного импульса во время опасности? Мозг мгновенно рассылает тысячи команд различным органам о необходимости их действия. И можно фиксировать отдельные сигналы измерением биотоков.

О состоянии нашего сердца судят по электрокардиограмме, которая является не чем иным, как зафиксированными с помощью специального прибора электрохимическими показаниями, характеризующими происходящие там процессы.

Большинство ученых сходится на том, что память – не что иное как изменение химической структуры веществ в нервных клетках под действием электрических токов, возникающих в организме.

Клетка получила электрический импульс – сигнал запоминания. Под его воздействием происходит электрохимическое изменение в структуре некоторых соединений клетки и тем самым в структуре белков, которые синтезируются после запоминания. Разные импульсы будут вызывать разную структуру молекул.

Электрохимия начинает вмешиваться в древнейшую иглотерапию, которую в последнее время начали применять у нас в лечебной практике. При введении иглы в активную точку, она приобретает электрический потенциал, свидетельствующий о наличии в активных точках в этот момент электрохимических процессов.

  1. Электродные процессы. Электродвижущие силы.

Если два различных металла погрузить в раствор электролита, то при их замыкании друг с другом металлическим проводником, можно обнаружить электрический ток.

Химические превращения, которые происходят в растворах на электродах из проводников первого рода, называются электродными процессами.

___________________________________________________________________________________________

  1. Механизм возникновения потенциала на электроде.

Если в воду поместить пластинку какого либо металла, то ионы металла из его кристаллической решетки под влиянием полярных молекул воды будут отрываться и переходить в воду (процесс окисления). При этом поверхность металла зарядится отрицательно за счет избытка электронов металла, а слой воды зарядится положительно за счет ионов, которые перешли в воду. Ионы металла не будут распространяться по всему объему жидкости, а будут концентрироваться у поверхности металла, удерживаясь зарядом поверхности. Таким образом, на границе металл – вода, образуется двойной электрический слой и возникает потенциал между отрицательно заряженной пластинкой и слоем положительно заряженных ионов в растворе.

металл раствор ( ) Катионы в растворе, участвуя в тепловом движении могут получать такие

скорости в направлении поверхности металла, что могут потерять гидратную

оболочку и войти в состав кристаллической решетки(процесс восстановления)

При равенстве скоростей двух противоположных процессов в системе

устанавливается динамическое равновесие, которому соответствует

Рисунок №1. Двойной равновесный потенциал.

электрический слой

При погружении металла в раствор его соли наблюдается, аналогична картина, но равновесие наступает при другом скачке потенциала. Повышение концентрации ионов данного металла уменьшает способность ионов металла переходить с пластинки на раствор.

Таким образом, при погружении металла в воду или раствор, содержащий ионы данного металла, на границе раздела метал-раствор образуется двойной электрический слой и возникает потенциал, который называют электродным потенциалом.

Величина и знак электродного потенциала зависят от природы металла, активности (концентрации) ионов металла в растворе и температуры.

Поэтому металл может заряжаться относительно раствора как положительно, так и отрицательно.

Металлическая пластинка (проводник I-го рода) находящаяся в контакте с электролитом (проводником II рода) называется электродом. Условные обозначения электродов: |Cu, |Al (вертикальная черта граница раздела фаз).

  1. Гальванические элементы.

Любой гальванический – электрохимический элемент состоит из двух электродов – полуэллементов. На электродах протекают электрохимические реакции – на одном окисление, а на другом – восстановление.

Одним из наиболее простых гальванических элементов является элемент Якоби-Даниэля, состоящий из двух электродов – цинкового и медного, погруженных в соответствующие растворы сульфатов цинка и меди, которые разделены полупроницаемой мембраной. Цинковый электрод заряжается отрицательно по отношению к медному. При замыкании внешней цепи – цинк растворяется. Происходит реакции:

Zn - 2ē → (окисление) , а на медном электроде выделяется медь:

+ 2ē → Cu (восстановление).

Суммарный процесс – тообразующая реакция: Zn + = + Cu.

При схематичной записи гальванического элемента все фазы составляющие элемент записываются в одну строчку.

  • Образующие его фазы отделяются друг от друга сплошной вертикальной чертой;

  • Вещества, входящие в одну фазу, разделяются запятыми;

  • Контактирующие растворы разграничиваются одной пунктирной вертекальной чертой;

  • Если устранен диффузный потенциал, то контактирующие растворы разграничиваются сдвоенной пунктирной вертикальной чертой.

В схематической записи слева пишется электрод, на котором протекает процесс окисления, а справа электрод, на котором протекает процесс восстановления. Например, схематическая запись элемента Якоби-Даниэля:

(-) Zn | ¦¦ Cu (+) Знаки (+) и (-) указывают полярность электродов.

  1. Термодинамика гальванического элемента.

Если в электрохимическом элементе обратимо и изотермически протекает реакция:

aA + bB cC + dD, то Э.Д.С. такого элемента описывается уравнением

Е = - или Е = - 2,303

Е = ;

Где - стандартная Э.Д.С.; а и с - активности и концентрации реагирующих веществ, 2.303 переводной множитель при переходе от ln к lg;

= 0,059 при Т= 298,15 К;

n – число электронов, участвующих в окислительно - восстановительном процессе; F – число Фарадея, 96486,7 Кл/моль.

При обратимом протекании химической реакции в гальваническом элементе в условиях постоянства температуры и давления, получаемая электрическая энергия будет наибольшей и совершаемая системой электрическая работа будет максимальной полезной работой реакции, равной убыли изобарно – изометрического потенциала A max = -

Если отнести работу реакции к количеству электричества nF кулонов, то электрическая работа, совершаемая элементом, будет A = nEF, где

n – число электронов, участвующих в элементарном акте электрохимической реакции;

F – число фарадея;

E – ЭДС элемента;

И тогда nEF = -

При стандартных условиях ( I атм, T= 298, 15 К ) nEF = -

Следовательно , стандартная ЭДС элемента будет равна: =

Стандартная ЭДС элемента равна разности стандартных потенциалов ( ) правого (п) и левого (л) электродов.

=

Максимальная полезная работа химической реакции равна :

A max = RT ( - ) Уравнение изотермы химической реакции Вант-Гоффа.

К – константа равновесия химической реакции.

Если активности всех ионов, участвующих в реакции, равны единице ( = … прод = = … исход = I) т.е. стандартные условия, то:

A max = RT или n F = RT , тогда стандартная ЭДС будет равна:

= или = 2, 303 .

Константу равновесия электрохимического процесса можно рассчитать и через изменение изобарного потенциала.

- = RT или - = 2, 303 RT ; = -

Значение можно вычислить по уравнению Гиббса-Гельмгольца:

= - T , где - стандартная энтальпия; Т – температура, К; - изменение энтропии при стандартных условиях.

Гальванические элементы могут быть построены с применением электродов различного типа.

  1. Классификация электродов.

Электроды можно классифицировать по природе электронной реакции. Согласно этой классификации принято различать электроды первого рода, второго рода, газовые, окислительно-восстановительные и некоторые специальные типы электродов.

  1. Металлические электроды первого рода.

Металлические электрод первого рода, представляет собой металл (М), погруженный в раствор, содержащий ионы того же металла ( ).

Электроды первого рода можно схематически представить в виде М (вертикальная черта-граница фаз; Z – заряд катиона металла). На границе металл-раствор протекает электродная реакция:

+ nē = М

Величину электродного потенциала для металлического электрода первого рода можно рассчитать по уравнению Нернста:

= М +

– стандартный потенциал электрода при или = 1моль/ ;

активность катионов металла в растворе; концентрация катионов металла в растворе;

N – Число электронов, участвующих в электродной реакции (n = Z);

R – Универсальная газовая постоянная;

R = 8,314 Дж/К моль.

при T = 298, 15 К; 2, 303 – переводной множитель при переходе от ln и lg.

(Если T=298,15 К , то ).

Поэтому уравнение Нернста после подстановки принимает вид:

ЗАДАЧА:

Вычислить потенциал цинкового электрода в растворе, содержащем 1,2 г в 150 раствора при 298 К. Кажущаяся степень диссоциации соли в растворе = 60%.

Алгоритм:

  1. Кратко записать условие задачи. Дано: m = 1,2 г; = 60%; V = 150 ; T = 298 К;

Zn = 0,76 В

Найти: Zn

  1. Вычислить молярную концентрацию раствора.

C( = = 0,0496 моль/

  1. Вычислить молярную концентрацию ионов цинка в растворе.

С = 0,6 0,0496 = 0,02976 моль/

  1. Вычислить электродный потенциал по уравнению Нернста.

Zn = Zn + = - 0,76 + 0,02976 = - 0,8376 В.

  1. Электроды второго рода.

Электрод второго рода представляет собой полуэлемент, состоящий из металла, покрытого слоем труднорастворимого соединения ( соли, оксида) и погруженного в раствор содержащий тот же анион, что и труднорастворимое соединение. Схематически электрод второго рода можно представить в виде:

, а протекающую в нем реакцию - MA + Zē = M + (A – анион, M – металл).

Потенциалы электродов второго рода легко воспроизводимы и устойчивы. Эти электроды часто применяются в качестве стандартных полуэлементов или электродов сравнения, по отношению к которым измеряют потенциалы других электродов. Наиболее важны в практическом отношении каломельные, хлорсеребряные, ртутносульфатные и сурьмяные электроды.

  • Хлорсеребряный электрод.

Хлорсеребряный электрод представляет собой систему

Серебряная проволочка покрыта слоем AgCl и помещена в раствор KCl определенной концентрации и насыщенного AgCl.

Раствор хлорида калия может быть насыщенным или с концентрацией 1моль/ или 0,1 моль/ . Потенциал возникает на границе

Электродная реакция полуэлемента: AgCl + ē

Направление реакции зависит от природы второго электрода.

Электрод обратим относительно катионов серебра, так как анионы не участвуют в окислительно-восстановительном процессе на электроде. Поэтому потенциал электрода равен:

В насыщенном растворе AgCl в присутствии KCl активность ионов серебра определяется активностью (концентрацией) ионов

Для труднорастворимой соли AgCl

; = тогда Ag + или

Ag + -

Ag + = После подстановки получаем :

= - (1), где - стандартный потенциал хлорсеребряного электрода, когда активность или концентрация ионов хлора в растворе равна единице (справочная величина).

Из уравнения (1) видно, что потенциал хлорсеребряного электрода зависит от температуры (Т,К) и активности (концентрации) ионов раствора KCl.

Так как в процессе измерений концентрация (активность) ионов почти не изменяется, то и потенциал хлорсеребряного электрода при данной температуре остается величиной постоянной.

  • Каломельный электрод.

Каломельный электрод состоит из ртути, пасты (приготовленной из каломели , раствора KCl, и одной капли металлической ртути), платиновой проволоки, которая контактирует с металлической ртутью. Электрод заливают раствором KCl, насыщенного . (Рис.)

Раствор хлорида калия может быть насыщенным или с концентрацией 1 моль/ или 0,1 моль/ .

Электродная реакция: + 2ē ⇆ 2Hg + 2 .

В электродной реакции участвует ртуть и поэтому потенциал электрода будет зависеть от активности ионов ртути.

Но в насыщенном растворе в присутствии KCl активность ионов ртути определяется активностью ионов раствора KCl. Соль одновалентной ртути труднорастворимое соединение.

ПР ( ) = тогда, = . Если активность ионов ртути подставить в уравнение для расчета потенциала, то получим уравнение:

или

-

(n=2 , участвует два электрона в электродной реакции).

Уравнение для вычисления потенциала каломельного электрода будет иметь вид :

= - или = где,

- стандартный потенциал каломельного электрода (справочная величина). Следовательно, потенциал каломельного электрода, как и хлорсеребряного, зависит от активности ионов и температуры.

  1. Газовые электроды.

Любой газовый электрод представляет собой полуэлемнт, состоящий из металлического проводника, контактирующего одновременно с газом и раствором, содержащим ионы этого газа. Чаще, при конструировании газовых электродов используется платина, обладающая высокой адсорбционной и каталитической способностью.

  • Водородный электрод.

Г азовый водородный электрод можно представить схемой

Молекулярный водород адсорбируется на поверхности платины (Рис.) Адсорбированный водород затем в виде ионов переходит в раствор.

Электронная реакция водородного электрода:

2

2 2H = или + ē = H = ½

Потенциал водородного электрода определяется не только активностью водородных ионов, но и парциальным давлением газообразного водорода – Р( ).

+ 2,303 , где - стандартны потенциал водородного электрода, когда давление водорода I атм и концентрация катионов водорода в растворе I моль/

Стандартный потенциал водородного электрода при всех температурах условно принят равным нулю.

Если давление водорода на платине равно единице – I атм (101,3 кПа), то

+ 2,303 (n=2, участвует два электрона) или

+ 2,303

= 0; pH = - и тогда = - 0,059 рН.

Таким образом, при определенных условиях, потенциал водородного электрода дает непосредственно значение pH.

  1. Окислительно-восстановительные или редокс-электроды.

Редокс-электродами называют такие полуэлементы, в которых материал электрода в реакциях не участвует, а является лишь переносчиком электронов для протекающей в растворе реакции между окисленной и восстановленной формами веществ. Например:

Потенциал, который принимает дифферентный электрод (чаще платина) при погружении в данную окислительно-восстановительную систему, называется редокс-потенциалом.

При исследовании биологических объектов, часто встречаются сложные редокс-системы, в которых присутствуют окисленные и восстановленные формы различных соединений.

Следует различать простые и сложные редокс-электроды. В первом случае электродная реакция сворится к перемене валентности ионов без изменения их состава, например: + ē .

Простой редокс-електрод записывается в виде схемы: Red,Ox| Pt. Где Ox- окисленная, а Red – восстановленная формы вещества.

Потенциал простого редокс-электрода можно рассчитать по уравнению Петерса:

,

где aOx и aRed – активность окисленной и восстановленной формы вещества; n – число электронов, участвующих в окислительно-восстановительном процессе;

- стандартный окислительно-восстановительный потенциал, когда aOx = aRed (Справочная величина).

Потенциал простого редокс-электрода зависит от температуры и соотношения активностей (концентрации) окисленной и восстановленной формы вещества.

Платиновый электрод относительно редокс-системы может заряжаться положительно или отрицательно. Например С ( ) » С ( ). За счет электронов платины происходит восстановление:

+ ē → .

Платиновая пластинка заряжается положительно и притягивает анионы раствора. Образуется двойной электрический слой с определенным скачком потенциала. Если в растворе С ( ) » С ( ) , то в этом случае протекает обратная реакция: - ē → .

Платиновая пластинка принимает электроны и заряжается отрицательно.

ЗАДАЧА:

Рассчитать потенциал платинового электрода, погруженного в раствор, содержащего 0,004 моль/ Fe , и 0,002 моль/ Fe (Т=298 К, коэффициенты активности считать равными I)

Алгоритм.

  • Кратко записать условие задачи. Дано: С (Fe ) = 0,004 моль/

С (Fe ) = 0,002 моль/

Т=298 К; = + 0,771 В.

Найти: .

  • Вычислить редокс-потенциал по уравнению Петерса.

= + =

= + . =

0,771 + 0,059 lg 0,002 =

0,771 + 0,059 lg2 =

0,771 + 0,059 (lg2 + lg ) =

0,771 + 0,059 (0?3010 – 3) =

0,771 + 0,159 = 0,612 В.

В сложных редокс-электродах реакция протекает с участием ионов водорода. Схему сложного редокс – электрода записывают следующим образом:

Потенциалу электрода отвечает уравнение:

  • Хингидронный электрод.

Относится к сложным редокс-электродам. Хингидронный электрод представляет собой платиновый электрод, погруженный в раствор, содержащий ионы водорода и в большом избытке кристаллы хингидрона - .

Хингидрон – это эквимолекулярное соединение хинона и гидрохинона, плохо растворимое в воде. При растворении в воде хингидрон диссоциирует на эквивалентные количества хинона и гидрохинона:

(хинон) + (гидрохинон).

Гидрохинон, являясь слабой кислотой, диссоциирует с отщеплением водородных ионов, а образующийся двухзарядный анион способен обмениваться электронами с хиноном:

+ 2 =

+ 2ē =

_________________________

+ 2 + 2ē +

Суммарная реакция показывает, что равновесие зависит от концентрации ионов водорода. Если в раствор хинон-гидрохинон погрузить платиновую (или золотую) пластинку – это будет хингидронный электрод. Платиновый электрод принимает электроны, заряжается отрицательно и притягивает катионы водорода. На границе Pt- раствор образуется двойной электрический слой и возникает потенциал.

, где

- стандартный потенциал,

N = 2 (участвует два электрода),

- активность хинона,

– активность гидрохинона.

При избытке твердого хингидрона, отношение активностей (концентраций) хинона и гидрохинона является величиной постоянной.

Тогда 0,059 a ( ) или 0,059 pH.

Поэтому, хингидронный электрод можно использовать для определения pH растворов, но только в кислой среде. В щелочной среде равновесие смещается в сторону хингидрона.

ЗАДАЧА:

При 298 К ЭДС хингидронно-каломельного элемента равна 0,106 В. Вычислить pH раствора и концентрацию ионов .

Алгоритм:

  • Кратко записать условие задачи. Дано: (-) Hg| ,X,ГX|Pt (+).

E = 0, 106 В,

= 0,699 В.

Т = 298 К.

Найти: pH, C

  • Вычислить pH раствора. 0,059 pH

pH = = = I

  • Вычислить С ( ) pH = - ln С ( )

ln С ( )= - 10,081 С ( ) = =

8,892 .

  1. Ионоселективные электроды.

Ионоселективные электроды отличаются от всех рассмотренных ранее тем, что у них граничащие фазы – мамбрана-раствор – обладают ионной проводимостью, и потому на их границе не происходит электрохимическая реакция с переносом электронов. Процесс сводится здесь к обмену ионами между мембраной и раствором.

Междуфазовую границу пересекают только ионы, заряд которых при этом не изменяется. При соответствующем подборе состава и структуры мембраны, потенциал на межфазовой границе будет зависеть от активности только одного какого-либо вида ионов. Такие электроды обладают, следовательно, селективностью и позволяют измерить активность отдельных ионов.

Мембраны ионоселективных электродов могут быть твердыми и жидкими. К твердым относятся стеклянные, кристаллические, гетерогенные.

Стеклянные электроды были первыми ионоселективными электродами (рис).

Обычно стеклянный электрод изготавливают в виде стеклянной трубки с выдутым на одном конце стеклянным шариком с очень тонкими стенками. Шарик заполняют раствором, содержащим NaCl и HCl. В раствор погружают хлорсеребряный электрод, т.е. серебряную проволочку покрытую AgCl.

При подготовке к работе, стеклянный электрод предварительно выдерживается в воде в течение достаточно длительного времени. При этом происходит гидролиз силиката натрия в поверхностном слое стекла мембраны.

Ионы водорода, получающиеся при диссоциации кремниевой кислоты, частично переходят в раствор. Образуется двойной электрический слой у поверхности стекла.

Раствор изнутри

______________________________

Стекло

Мембраны

______________________________

Раствор внешн.

Скачек потенциала на внутренней поверхности стеклянной мембраны имеет постоянную величину, а ее внешней меняется в зависимости от активности ионов исследуемого раствора. Потенциал стеклянного электрода – это разность потенциалов, возникающих на внешней и внутренней поверхностях стеклянной мембраны.

В стеклянной мембране электрода известной подвижностью обладают лишь низкозарядные катионы, в первую очередь катионы щелочных металлов (Na, K), а силикатные, алюмосиликатные и иные оксиды (CaO) образуют практически неподвижную стенку. При создании контакта между стеклянной мембраной и раствором, начинается обмен ионами между стеклом и раствором.

мемб. + р-ра = р-р + M мемб.

Обмен характеризуется константой обмена:

K =

Потенциалу электрода отвечает уравнение:

В зависимости от значения К электрод селективен по отношению к ионам водорода (К« I), тогда

или , где

– стандартный потенциал стеклянного электрода.

Электрод селективен к ионам металла ( и др.) при К»I, либо не будет обладать селективностью при К = I.