Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭЛЕМЕНТЫ ЗЕМНОГО МАГНЕТИЗМА.doc
Скачиваний:
21
Добавлен:
26.11.2019
Размер:
305.15 Кб
Скачать

Напряжённость магнитного поля

Векторная величина Н, являющаяся количеств. хар-кой магн. поля. Н. м. п. не зависит от магн. св-в среды. В вакууме Н. м. п. совпадает с магнитной индукцией В, численно

H=B в СГС системе единиц и

H=В/m0 в Международной системе единиц (СИ), m0 — магнитная постоянная.

В среде Н. м. п. Н определяет тот вклад в магн. индукцию B, к-рый дают внеш. источники поля:

Н=В-4pJ (в системе ед. СГС) или H=(B/m0)-J (в СИ), где J— намагниченность среды.

Если ввести магнитную проницаемость среды m, то для изотропной среды

Н=В/mm0 (в СИ).

Единица Н. м. п. в СИ — ампер на метр (А/м), в системе ед. СГС — эрстед (Э);

1 А/м=4pХ10-3 Э»1,256•10-2 Э.

Н. м. п. прямолинейного проводника с током I (в СИ) H=Il2pa (a — расстояние от проводника); в центре кругового тока H=I/2R (R — радиус витка с током I); в центре соленоида на его оси H=nI (n — число витков на ед. длины соленоида). Практич. определение Н в ферромагн. средах (в магн. материалах) основано на том, что тангенциальная составляющая Н не изменяется при переходе из одной среды в другую.

- аксиальный вектор H(r, t), определяющий [наряду с вектором магнитной индукции B(r, t)] свойства макроско-пич. магн. поля. В случае вакуума двухвекторное описание магн. поля является чисто формальным, поэтому в гауссовой системе единиц в вакууме B=H, хотя, в силу традиций, и измеряются в единицах с разным наименованием: В - в гауссах (Гс), a H - в эрстедах (Э). В СИ сохраняется различие и для вакуума: B= m0 H, где m0 - магнитная постоянная. Измеряется H. м. п. в СИ в амперах на метр (А/м), 1 A/м = = 4p.10-3 Э.

В соответствии с первым Максвелла уравнением источниками H. м. п. являются электрич. токи (проводимости, смещения и т. п.):

где j, jCM - плотность тока, переносимого зарядами, и плотность тока смещения, D - вектор электрической индукции (здесь и далее применяется гауссова система единиц). В среде могут также присутствовать токи намагничивания с плотностью j м, связанные с индуцированной и (или) спонтанной намагниченностью M; j м = с[ M]. Эти токи и обусловливают различие векторов поля В и H:

В этом отношении существует принципиальная разница между пост. и переменными во времени полями. В пост. полях ур-ние (2) (к-рое иногда наз. материальным ур-нием или ур-нием среды) автономно, в перeм. полях оно зависит от вида материальной связи между электрич. векторами: D = D(E) = E+ 4pPe (E - напряжённость электрического поля, Pe - вектор электрической поляризации), потому что вихревая составляющая плотности перем. тока j может быть с известным произволом интерпретирована и как плотность тока поляризации j п = д Pe/дt, и как плотность тока намагничивания j м. В общем случае:

Поэтому определение H. м. п. в случае перем. полей условно и зависит от принятых материальных связей. В ВЧ-электродинамике иногда вообще не различают векторов В и H, относя все токи к токам поляризации. Принципиальным является вопрос о том, какой из векторов, В илиH, берётся в качестве "первичного". Историч. традиция выбрала в качестве такового вектор H, с чем и связано его название - H. м. п. Поэтому ур-ние (2) трактовалось как зависимость вектора В от "первичного" поля HB = H+ 4pM = mH (m- магнитная проницаемость). Однако впоследствии оказалось, что истинно первичным целесообразнее считать вектор магн. индукции В, совпадающий с усредненной по физически малому объёму напряжённостью микроскопич. магн. поля в вакууме.

Магнитное поле

Cиловые линии магнитного полямагнита, визуализированные железными опилками.

Согласно уравнениям Максвелла   и  , и пока неизвестны магнитные монополи, магнитное поле может возникать лишь в результате изменения электрической индукции. Отсюда следует, что магнитное поле является вихревым, а его силовые линии (линии магнитной индукции) всегда замкнуты, то есть дивергенция магнитного поля везде равна 0.

Линии магнитной индукции могут быть наглядно визуализированы при помощи ферромагнитных порошков, помещённых в магнитное поле.

МАГНИТНАЯ ИНДУКЦИЯ

- это силовая характеристика магнитного поля.

В ектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.

Единица измерения магнитной индукции в системе СИ:

ЛИНИИ МАГНИТНОЙ ИНДУКЦИИ

- это линии, касательными к которой в любой её точке является вектор магнитной индукции.

Однородное магнитное поле - это магнитное поле, у которого в любой его точке вектор магнитной индукции неизменен по величине и направлению; наблюдается между пластинами плоского конденсатора, внутри соленоида (если его диаметр много меньше его длины) или внутри полосового магнита.

СВОЙСТВА ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ

  • имеют направление;

  • непрерывны;

  • замкнуты (т.е. магнитное поле является вихревым);

  • не пересекаются;

  • по их густоте судят о величине магнитной индукции.

НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ

- определяется по правилу буравчика или по правилу правой руки.

Правило буравчика ( в основном для прямого проводника с током):

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Правило правой руки ( в основном для определения направления магнитных линий внутри соленоида):

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Существуют другие возможные варианты применения правил буравчика и правой руки.

БИО - САВАРА - ЛАПЛАСА ЗАКОН

[по имени франц. учёных Ж. Б. Био (J. В. Biot; 1774 - 1862), Ф. Савара (F. Savart; 1791 - 1841) и П. С. Лапласа (P. S, Laplace; 1749 - 1827)] - один из основных законов магнитного поля тока. Согласно Б. - С. - Л. з. вектор dB индукции магн. поля, создаваемого в вакууме элементом dlпроводника

с током силой I, в произвольной точке М поля равев (см. рис.): 

г де dl - вектор, проведённый в направлении тока в элементе dl проводника, г - радиус-вектор, проведённый в точку М из элемента dl, rрасстояние от dl до М, а. - угол между векторами dl и r, н0 - магнитная постоянная. Вектор dB перпендикулярен к dl и r и направлен так, что из конца dB вращение от dl к r по кратчайшему направлению видно происходящим против хода часовой стрелки (на рис. вектор dB направлен из-за чертежа).

Магнитное поле кругового тока

      Рассмотрим поле, создаваемое током I, текущим по тонкому проводу, имеющему форму окружности радиуса R .

      Определим магнитную индукцию на оси проводника с током на расстоянии х от плоскости кругового тока. Векторы    перпендикулярны плоскостям, проходящим через соответствующие    и   . Следовательно, они образуют симметричный конический веер. Из соображения симметрии видно, что результирующий вектор    направлен вдоль оси кругового тока. Каждый из векторов    вносит вклад равный  , а    взаимно уничтожаются. Но  , а т.к. угол между    и    α – прямой, то    тогда получим

 

,

 (1.6.1)

 

      Подставив в (1.6.1)    и, проинтегрировав по всему контуру  , получим выражение для нахождения магнитной индукции кругового тока:

 

,

 (1.6.2)

 

При  , получим магнитную индукцию в центре кругового тока:

 

,

 (1.6.3)

 

      Заметим, что в числителе (1.6.2)      – магнитный момент контура. Тогда, на большом расстоянии от контура, при  , магнитную индукцию можно рассчитать по формуле:

 

,

 (1.6.4)

 

      Силовые линии магнитного поля кругового тока хорошо видны в опыте с железными опилками (рис. 1.8).

      

Рис. 1.8