Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 Холодильные машины (готовые).docx
Скачиваний:
15
Добавлен:
28.09.2019
Размер:
1.87 Mб
Скачать

7. Обобщенный цикл Карно. Связь прямого и обратного циклов.

От построения обратимого цикла зависит правильность термодинамического анализа действительного цикла. Рассмотрим некоторые общие положения, касающиеся построения обратимых циклов для различных внешних условий. Предположим, что внешние источники имеют постоянную температуру. Для таких источников обратимым будет обратный цикл Карно 1—2—3—4. В этом цикле теплообмен рабочего вещества с внешними источниками будет идти при бесконечно малых разностях температур. Процессы сжатия и расширения адиабатны и изоэнтропны, т. е. тоже обратимы. Для внешних источников с постоянными температурами обратимым также будет цикл 1-5-6-4, в котором s5 – s1 = s6- s4. Такой цикл носит название регенеративный цикл или обобщенный цикл Карно. Значения холодильного коэффициента цикла Карно и регенеративного будут одинаковы, т. е. Рис. 4.6. Цикл Карно В том случае, когда внешние источники имеют переменную температуру, цикл Карно уже не может быть выбран в качестве обратимого, так как в цикле Карно теплота подводится и отводится в изотермическом процессе, поэтому появляется внешняя необратимость. Связь прямого и обратного циклов. Связь прямого и обратного циклов. Для того чтобы осуществить обратный цикл, необходимо затратить работу, получаемую в прямом цикле, поэтому для определения эффективности получения холода (в холодильном цикле) или теплоты (в цикле теплового насоса) необходимо рассмотреть совместную работу обратных и прямых циклов.

На рис. 4.12 изображены обратный и прямой обратимые циклы Карно (циклы I) (1-2-3-4 и 8—7—6—5), в которых используется одно и то же рабочее вещество. Работа, полученная в прямом цикле (в цикле теплового двигателя), , где - работа расширителя и компрессора в прямом цикле. Термический КПД прямого цикла где qп.ц. – теплота затраченная в прямом цикле.

Холодильный коэффициент обратного цикла

Прямой и обратный циклы: I — с одинаковыми рабочими веществами; II — с разными рабочими веществами Условимся, что вся работа прямого цикла используется в обратном цикле без потерь, тогда . Термодинамическая эффективность совместной работы прямого и обратного циклов определяется отношением количества теплоты, подведенной к рабочему веществу обратного цикла, к количеству теплоты, подведенной к рабочему веществу прямого цикла. Это отношение называется тепловым коэффициентом , (циклы II) показаны прямой и обратный циклы, в которых рабочие вещества различны. Зависимости, полученные для циклов с одинаковыми рабочими веществами, будут такими же и для циклов с разными рабочими веществами.

Действительный тепловой коэффициент учитывает потери прямого и обратного циклов ( ) и потери при передаче работы от прямого к обратному циклу ( ). С учетом перечисленных потерь, действительный тепловой коэффициент определяют по формуле

8.Рабочие вещества холодильных машин. Классификация. Термодинамические, теплофизические, физико-химические, физиологические и озоноразрушающие свойства.

В холодильных машинах рабочими веществами являются холодильные агенты и хладоносители.С помощью холодильных агентов совершается обратный термодинамический цикл в системе холодильной машины.Хладоносители являются промежуточными рабочими веществами, которые передают теплоту от охлаждаемого объекта к холодильному агенту.В какой-то мере к рабочим веществам можно отнести и смазочные масла, так как они циркулируют вместе с хладагентами по системе и значительно влияют на рабочие характеристики холодильных машин.

В настоящее время известно около ста различных холодильных агентов. Самыми распространенными из них являются: воздух, вода, аммиак, диоксид углерода, чистые углеводороды (пропан, метан, изобутан и др.), хлор – фтор – бромпроизводные углеводородов (хладоны) и другие вещества. В некоторых машинах целесообразно применение азеотропных и неазеотропных смесей холодильных агентов. В некоторых старых литературных источниках хладоны представлены их зарубежным названием – фреоны, которое запатентовано американской фирмой Дюпон.

Сокращенное обозначение холодильного агента строится по форме RN (где R – международный символ, обозначающий холодильный агент; N – присвоенный номер холодильного агента). Например R22 – хладон 22 (CHClF2), R729 – воздух, R170 – этан (C2H6), R717 – аммиак (NH3), R718 – вода (H2O), R744 – диоксид углерода (CO2) и т.п.

Возможность применения того или иного холодильного агента для конкретных условий работы зависит от их свойств. Свойства хладагентов влияют на конструктивные особенности холодильной машины, потребляемую мощность, холодопроизводительность и другие характеристики.К основным свойствам относятся:

1.теплофизические 4.физиологические

2.термодинамические 5.экологические

3.физико-химические

Теплофизические свойства – это теплоемкость (С), теплопроводность (λ), вязкость (μ), плотность (ρ), температуропроводность (а), поверхностное натяжение (η) и т др. Они главным образом влияют на интенсивность теплообмена в аппаратах, на потери давления в системе и на массу и габариты компрессора.

К термодинамическим свойствам относятся нормальная температура кипения, давление насыщения при температуре 30 °С, критическая температура, температура замерзания, теплота парообразования и др.

Физико-химические свойства включают в себя термическую стабильность, взрывоопасность, воспламеняемость, электрические свойства, взаимодействие со смазочным маслом, водой и конструкционными материалами и др.

Физиологические свойства показывают степень воздействия холодильных агентов на живой организм.

Экологические свойства показывают степень воздействия холодильных агентов на озоновый слой околоземной орбиты и парниковый эффект. Попадая в верхние слои атмосферы (стратосфера на высоте 16 – 45 км.) под воздействием солнечной радиации из хладонов выделяются хлор и бром. Они вступают в химическую реакцию с озоном, отнимают от него атом кислорода и образуют окись хлора и окись брома, тем самым уменьшая количество озона.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]