Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика ответы оптика.doc
Скачиваний:
18
Добавлен:
27.09.2019
Размер:
1.32 Mб
Скачать
  1. Виды поляризации света

ПОЛЯРИЗАЦИЯ СВЕТА - физ. характеристика оптич. излучения, описывающая поперечную анизотропию световых волн, т. е. неэквивалентность разл. направлений в плоскости, перпендикулярной световому лучу.

Графически состояние П. с. обычно изображают с помощью эллипса поляризации - проекции траектории конца вектора Е на плоскость, перпендикулярную лучу (рис. 1). Проекц. картина полностью поляризованного света в общем случае имеет вид эллипса с правым или левым направлением вращения вектора Е (рис. 1, б, г, е). Такой свет наз. эллиптически поляризованным. Наиб, интерес представляют предельные случаи эллиптич. поляризации - линейная, когда эллипс поляризации вырождается в отрезок прямой линии (рис. 1, а, д), определяющий положение (азимут q) плоскости поляризации, и циркулярная (или круговая), когда эллипс поляризации представляет собой окружность (рис. 1, в).

В первом случае свет наз. плоскополяризованным или линейно поляризованным, а во втором - право- или левоциркулярно поляризованным в зависимости от направления обхода эллипса поляризации. П. с. принято называть правой, если вектор Е совершает вращение по часовой стрелке при наблюдении навстречу световому лучу.

Для количеств. описания характера поляризации полностью поляризованного света используют величину отношения длин малой (В)и большой (А)полуосей эллипса поляризации - эллиптичность е = В/А, приписывая ей знак, определяемый направлением вращения вектора Е. Правополяризованному свету приписывают положительную эллиптичность, а левополяризованному свету - отрицательную. Т. о., для всех типов П. с. эллиптичность е лежит в пределах -1 1. В нек-рых случаях удобно ввести также угол эллиптичности определяемый соотношением:

  1. Дифференциальное уравнение затухающих электромагнитных колебаний

. Дифференциальное уравнение свободных затухающих колебаний заряда в контуре (при R≠0) , как известно

Учитывая формулу собственной частоты колебательного контура и принимая коэффициент затухания равным ., затем

колебания заряда подчиняются закону

с частотой , и в итоге решаем .

  1. Метод зон Френеля. Дифракция Френеля.

Свет поляризуется при отражении от границы двух сред и при прохождении границы – при преломлении.

Если угол падения света на границу раздела двух диэлектриков (например воздух – стекло) отличен от нуля, то отраженный и преломленный свет оказывается частично поляризованным. (При отражении света от проводящей поверхности свет получается эллиптически поляризованным).

В отраженном луче преобладают колебания, перпендикулярные плоскости падения, а в преломленном луче – колебания параллельные плоскости падения (рис. 11.6, а).

Степень поляризации зависит от угла падения.

Если луч падает на границу двух сред под углом α, удовлетворяющим условию где n21 – показатель преломления второй среды относительно первой, то отраженный луч оказывается полностью поляризованным. Преломленный луч – поляризован частично (рис. 11.6, б).

При отражении естественного света от диэлектрика (диэлектрического зеркала) используется формула Френеля для расчета степени поляризации:

Дифра́кция Френе́ля — дифракционная картина, которая наблюдается на небольшом расстоянии от препятствия, по условиям, когда основной вклад в интерференционную картину дают границы экрана.

На рисунке схематично изображён (слева) непрозрачный экран с круглым отверстием (апертура), слева от которого расположен источник света. Изображение фиксируется на другом экране - справа. Вследствие дифракции свет, проходящий через отверстие, расходится, поэтому область, которая была затемнена по законам геометрической оптики, будет частично освещённой. В области, которая при прямолинейном распространении света была бы освещённой, наблюдаются колебания интенсивности освещения в виде концентрических колец.

Дифракционная картина для дифракции Френеля зависит от расстояния между экранами и от расположения источников света. Её можно рассчитать, считая, что каждая точка на границе апертуры излучает сферическую волну по принципу Гюйгенса. В точке наблюдения (занимаемое вторым экраном) волны или усиливают друг друга, или гасятся в зависимости от разности хода.

Условие применимости достаточно слабо, и позволяет все характерные размеры взять как сравнимые величины, если апертура много меньше, чем длина пути. К тому же так как нас интересует только малая область недалеко от источника величины x и y много меньше чем z, предположим , что означает и r в знаменателе можно аппроксимировать выражением .

В противоположность дифракции Фраунгофера, дифракция Френеля должна учитывать кривизну волнового фронта, для того чтобы правильно учесть относительные фазы интерферирующих волн.

Электрическое поле для дифракции Френеля в точке (x,y,z) дано в виде:

Это - интеграл дифракции Френеля; он означает, что, если приближение Френеля действительно, распространяющееся поле - сферическая волна, начинающаяся в апертуре и движущаяся вдоль z.