Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика ответы оптика.doc
Скачиваний:
18
Добавлен:
27.09.2019
Размер:
1.32 Mб
Скачать
  1. Интерференция от двух источников

Свет от одного источника с помощью непрозрачного экрана с двумя отверстиями даёт возможность получить два когерентных источника волн (схема Юнга). Расстояние между источниками (В, С) равно l. Длина волны, излучаемая источниками λ, расстояние до экрана, где наблюдается интерференция. О – центр экрана.

Пусть в точке М – экрана происходит наложение когерентных волн. Получим условие усиления и ослабления волнами друг друга. Расстояние от В источника до точки М – d1, от С до точки М – d2. Колебания точки М, вызываемые первым. источником волн:

а колебания, вызываемые 2-ым источником:

Результирующее колебание точки М:

Амплитуда колебаний точки М:

AM=2Acos(k(d2-d1)/2) зависит от положения точки на экране и может быть равной 2А, если волны усиливают друг друга или нулю, если волны ослабляют друг друга.

Получим условие усиления или максимум интерференции. Чтобы АМ=2А, необходимо чтобы

|cos(k(d2-d1)/2)|=1 Это выполняется, если

Значит d2-d1=±mλ.

Пусть d2-d1=Δd – разность хода интерферирующих лучей, а ΔФ=2π(d2-d1)/λ=2πΔd/λ – разность фаз интерферирующих волн, тогда ΔΤ=2π/λ (d2-d1) =2π/λ Δd – ρоотношение между разность фаз и разность хода волн.

Если d2-d1=Δd=± mλ, γде m=0,1…, то АМ=2А и, следовательно, в этих точках пространства (экрана) наблюдается максимум интерференции. Разность фаз волн при этом будет равна ΔФ=±2πmλ/λ=±2πm.

Условие ослабления или минимум интерференции Ам=0, |cos(k(d2-d1)/2)|=0.

Это выполняется, если (k(d2-d1)/2)=±(2m+1)λ/2; следовательно Δd=±(2m+1)λ/2.

Волны ослабляют друг друга, если разность хода при этом ΔΤ=±2πmλ /(2λ)(2m+1)=±(2m+1)π,

m – называется порядком интерференционного максимума или минимума. В центре экрана наблюдается максимум нулевого порядка: d2-d1=Δd=0.

  1. Электрический колебательный контур. Энергия электромагнитных колебаний.

Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания

Резонансная частота контура определяется так называемой формулой Томсона:

Пусть конденсатор ёмкостью C заряжен до напряжения U0. Энергия, запасённая в конденсаторе составляет

При соединении конденсатора с катушкой индуктивности, в цепи потечёт ток , что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора Ес =0. Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

где L — индуктивность катушки, I0 — максимальное значение тока.

После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения U0.

В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.

При этом вся энергия W колебательного контура заключена в электрическом поле конденсатора, т.е. В промежутке времени от 0 до Т/4(рис. 2, б) конденсатор, разряжаясь, создает через контур ток I, идущий по часовой стрелке. При этом согласно правилу Ленца в катушке возникает ЭДС самоиндукции, препятствующая нарастанию этого тока. К моменту времени Т/4 (рис. 2, в) конденсатор полностью разряжается, напряжение U между его обкладками становится равным нулю, и электрическое поле в нем отсутствует К этому времени ток 1 в контуре и индукция В магнитного поля этого тока достигают максимальных значений. Следовательно, вся энергия контура заключена в этот момент в его магнитном поле, т.е.

В промежутке времени от Т/4 до Т/2 при уменьшении тока в катушке возникает ЭДС самоиндукции и индукционный ток, направление которого, согласно правилу Ленца, совпадает с направлением убывающего разрядного тока. К моменту времени Т/2 (рис. 2, д) ток в контуре прекращается, следовательно, исчезает магнитное поле Напряженность электрического поля Е и напряжение U конденсатора максимальны. Таким образом, вся энергия колебательного контура заключена теперь в его электрическом поле, т.е.

в промежутке времени от 1/2 Т до 3/4Т (рис. 2, е) конденсатор вновь разряжается и создает в контуре ток. Однако теперь положительно заряжена нижняя обкладка конденсатора, поэтому направление тока I в контуре меняется на противоположное. К моменту времени 3/4 Т(рис. 2, ж) конденсатор полностью разряжается, напряжение U между его обкладками падает до нуля, электрическое поле исчезает а ток I в контуре и индукция В магнитного поля в этот момент максимальны. Вся электрическая энергия контура превратилась в энергию магнитного поля, т.е.

В промежутке времени от 3/4Т до Т (рис. 14.2, з) сила тока уменьшается, а возникшая в катушке ЭДС самоиндукции препятствует этому. На верхней пластине появляются избыточные положительные заряды, а на нижней — отрицательные. К моменту времени Т (рис. 2, и) ток в контуре прекращается, исчезает магнитное поле, а напряженность Е электрического поля конденсатора и напряжение U между его обкладками максимальны. Значит, вся энергия колебательного контура заключена теперь в его электрическом поле, т.е.

вторая перезарядка возвращает контур в исходное состояние. Таким образом, завершилось полное колебание. В дальнейшем процесс повторяется в уже описанном порядке.

  1. Характеристики затухающих ЭМ колебаний.

Скорость затухания колебаний определяется коэффициентом затухания ГАММА . В соответствии с выражением (7.1.7) коэффициент затухания обратен по величине тому промежутку времени, за который амплитуда колебаний уменьшается в «e»=2.718 раз. Период затухающих колебаний определяется формулой:

С ростом ГАММА период увеличивается, отсюда можно вычислить зависимость:

Такое отношение амплитуд называется декрементом затухания, а его натуральный логарифм - логарифмическим декрементом затухания:

Помимо рассмотренных величин для характеристики колебательной системы употребляется величина , называемая добротностью колебательной системы. Добротность пропорциональна числу колебаний, совершаемых системой за то время, за которое амплитуда колебаний уменьшается в «e» раз. Большим значениям добротности соответствует малое затухание.