Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_na_8-9_ballov.docx
Скачиваний:
1
Добавлен:
23.09.2019
Размер:
1.08 Mб
Скачать

38.Взаимное расположение прямых.

Пусть даны две прямые:

и .

Эти прямые заданы своими точками и и направляющими векторами и . Поэтому:

.

Параллельность или перпендикулярность прямых равносильна, соответственно, параллельности или перпендикулярности их направляющих векторов. Поэтому условие перпендикулярности прямых можно записать в виде:

или .

Условие параллельности: .

Возможны четыре случая взаимного расположения прямых:

  1. Прямые совпадают: , т.е.

.

  1. Прямые параллельны: непараллелен , но , т.е. .

  2. Прямые пересекаются: непараллелен , но , , ‑ компланарны, т.е.

    (5.8)

  3. Прямые скрещиваются: , , ‑ некомпланарны, т.е. .

Условие (5.8) выполняется в случаях I-III и означает, что прямые лежат в одной плоскости.

39.Эллипс и его характеристики.

Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек и есть величина постоянная (большая, чем расстояние между и ).

Точки и называются фокусами эллипса. Обозначив расстояние между фокусами через , а сумму расстояний от точек эллипса до фокусов через , имеем . Если это условие не выполнено, то рассматриваемое множество точек либо отрезок прямой, заключенной между фокусами, либо не содержит ни одной точки.

Из определения эллипса вытекает следующий метод его построения: если концы нерастяжимой нити длины закрепить в точках и и натянуть нить острием карандаша, то при движении острия будет вычерчиваться эллипс с фокусами и и с суммой расстояний от произвольной точки эллипса до фокусов, равной (Рис. 7.1).

Рис. 7.1.

Составим уравнение эллипса. Для этой цели расположим декартову прямоугольную систему координат таким образом, чтобы ось походила через фокусы и , положительное направление оси – от к , начало координат выберем в середине отрезка . Тогда координаты точек и будут соответственно и .

Пусть ‑ произвольная точка эллипса, тогда:

,

.

По определению эллипса . Подставляя сюда значения и , имеем:

(7.1)

Уравнение (1) и есть уравнение эллипса. Преобразуя, упростим его:

Возведя обе части уравнения в квадрат и приведя подобные члены, получим: .

Возведем еще раз обе части в квадрат и приведем подобные члены. Получаем или

(7.2)

Положительную величину обозначим через . Тогда уравнение (7.2) примет вид:

(7.3)

Оно называется каноническим уравнение эллипса.

Координаты точек эллипса ограничены неравенствами . Значит, эллипс ограниченная фигура, не выходящая за пределы прямоугольника со сторонами и :

x

a

c

O

-c

-a

2b

y

b

-b

Рис. 7.3.

-

2a

Рис.

7.3

Заметим, что в уравнение (7.3) входят лишь четные степени и . Поэтому, если точка принадлежит эллипсу, то и точки , , также ему принадлежат. А это означает, что эллипс – линия симметричная относительно координатных осей и .

Поэтому для исследования формы эллипса достаточно рассмотреть его в первой координатной четверти, а в остальных четвертях его строение определяется по симметрии. Для первой четверти, из уравнения (7.3) имеем:

(7.4)

При возрастании от до , монотонно убывает от до . График функции изображен на Рис. 7.4.

Рис. 7.4

Достроив остальные четверти эллипса по симметрии, получим весь эллипс (Рис. 7.5).

Оси симметрии эллипса (оси и ) называются просто его осями, а центр симметрии – точка ‑ центром эллипса. Точки пересечения эллипса с осями координат называются вершинами эллипса. Отрезки и , а также их длины и называются полуосями эллипса. В случае, когда фокусы эллипса находятся на оси (как в нашем случае), из равенства , следует, что . В этом случае называется большой полуосью, а ‑ малой.

Если , то уравнение (7.3) можно переписать в виде:

(7.5)

Эксцентриситет характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении становится более вытянутым (Рис. 7.6).

0

=0,6

a

-

a

-b

b

Рис. 7.6.

=0,8

х

Фокальными радиусами точки эллипса называются отрезки прямых, соединяющие эту точку с фокусами и . Их длины и задаются формулами и . Прямые называются директрисами эллипса. Директриса называется левой, а ‑ правой. Так как для эллипса , то и, следовательно, левая директриса располагается левее левой вершины эллипса, а правая – правее правой вершины.

Директрисы обладают следующим свойством: отношение расстояния любой точки эллипса от фокуса к ее расстоянию до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е. .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]