Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
геометрия 7 - 12.docx
Скачиваний:
3
Добавлен:
05.08.2019
Размер:
410.1 Кб
Скачать

Вопрос№8

Основные геом.фигуры: точка, прямая, плоскость. Способы задания.Относительное положение на ортогональном чертеже.Точка. как математическое понятие не имеет размеров. Очевидно, если объект проецирования является нульмерным образом, то говорить о его проецировании бессмысленно. В геометрии под точкой целесообразно понимать физический объект, имеющий линейные измерения. Условно за точку будем принимать шарик с бесконечно малым радиусом. При такой трактовке понятия точки можно говорить о ее проекциях. Прямая на комплексном чертеже может быть задана проекциями прямой; проекциями двух точек, принадлежащих прямой; проекциями отрезка прямой.

На эпюре плоскость может быть задана графически одним из следующих способов, показанных на рис. 2.12.

Рис. 2.12. Способы задания плоскости: а − тремя точками не лежащими на одной прямой; б − прямой и точкой вне ее; в − двумя пересекающимися прямыми; г − двумя параллельными прямыми; д, е − плоской фигурой; ж − следами плоскости.

Точка. Построим пространственную модель, на которой изобразим две взаимно перпендикулярные плоскости П1 и П2. Линия пересечения плоскости П1 и плоскости П2 называется осью проекций и обозначается П2 / П1. Ось проекций совпадает с осью ОХ. Выберем в пространстве точку А и опустим из неё на плоскости П1 и П2 перпендикуляры. Тогда мы получим две проекции точки А: А1 - первую или горизонтальную проекцию точки А и А2 - вторую или фронтальную проекцию точки А. Прямые А А1 и А А2 называются проецирующими прямыми или проецирующими лучами. Перейдем от модели к чертежу. Для этого мысленно удалим точку А и повернём плоскость П1 вместе с отрезком А1 А0 вокруг оси проекций П2 / П1 до совмещения с плоскостью П2. Полученный чертеж называется эпюром Монжа, ортогональным чертежом или комплексным чертежом.

Вопрос № 9.

Основные геом. фигуры: точка, прямая, плоскость. Способы задания. (см.ответ на 8 вопрос) Взаимное положение прямой и плоскости.

Определение взаимного положения прямой и плоскости - позиционная задача, для решения которой применяется метод вспомогательных секущих плоскостей. Сущность метода заключается в следующем: через прямую проведем вспомогательную секущую плоскость Q и установим относительное положение двух прямых a и b, последняя из которых является линией пересечения вспомогательной секущей плоскости Q и данной плоскости T(рис.6.1).

Рисунок 6.1 Метод вспомогательных секущих плоскостей

Каждому из трех возможных случаев относительного расположения этих прямых соответствует аналогичный случай взаимного расположения прямой и плоскости. Так, если обе прямые совпадают, то прямая а лежит в плоскости T, параллельность прямых укажет на параллельность прямой и плоскости и, наконец, пересечение прямых соответствует случаю когда прямая а пересекает плоскость T. Таким образом возможны три случая относительного расположения прямой и плоскости: Прямая принадлежит плоскости; Прямая параллельна плоскости; Прямая пересекает плоскость, частный случай – прямая перпендикулярна плоскости. Рассмотрим каждый случай.

Прямая линия, принадлежащая плоскости

Аксиома 1. Прямая принадлежит плоскости, если две её точки принадлежат той же плоскости (рис.6.2).

Задача. Дана плоскость (n,k) и одна проекция прямой m2. Требуется найти недостающие проекции прямой m если известно, что она принадлежит плоскости, заданной пересекающимися прямыми n и k. Проекция прямой m2 пересекает прямые n и k в точках В2 и С2, для нахождения недостающих проекций прямой необходимо найти недостающие проекции точек В и С как точек лежащих на прямых соответственно n и k. Таким образом точки В и С принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эти точки, значит согласно аксиоме прямая принадлежит этой плоскости.

Рисунок 6.2 Прямая и плоскость имеют две общие точки

Аксиома 2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой расположенной в этой плоскости (рис.6.3).

Задача. Через точку В провести прямую m если известно, что она принадлежит плоскости заданной пересекающимися прямыми n и k. Пусть В принадлежит прямой n лежащей в плоскости заданной пересекающимися прямыми n и k. Через проекцию В2 проведем проекцию прямой m2 параллельно прямой k2, для нахождения недостающих проекций прямой необходимо построить проекцию точки В1, как точки лежащей на проекции прямой n1 и через неё провести проекцию прямой m1 параллельно проекции k1. Таким образом точки В принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эту точку и параллельна прямой k, значит согласно аксиоме прямая принадлежит этой плоскости.

Рисунок 6.3 Прямая имеет с плоскостью одну общую точку и параллельна прямой расположенной в этой плоскости.