Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Инженерка ответы шпора.docx
Скачиваний:
8
Добавлен:
30.07.2019
Размер:
376.64 Кб
Скачать

9) Поверхностью вращения называется поверхность, которая описывается какой-либо образующей при её вращении вокруг неподвижной оси.

Образующая может быть как плоской, так и пространственной кривой. В частном случае это может быть прямая линия. Для задания поверхности вращения необходимо задать её ось i и какую-либо образующую l, лежащую на этой поверхности. Определитель поверхности вращения: Г(i, l). На чертеже она может быть задана проекциями этих элементов в соответствии с рисунком 54. Каждая точка L кривой l описывает при вращении окружность m с центром на оси i. Эти окружности называются параллелями поверхности. Кривые q, получающиеся в сечении поверхности вращения плоскостями (1), проходящими через ось i, называются меридианами.

Поверхность симметрична относительно любой меридиональной плоскости, а все меридианы равны между собой. В соответствии с рисунком 54 образующая l лежит на одном из меридианов.

Если поверхность вращения расположить так, чтобы её ось i была перпендикулярна к плоскости проекций П1, то все параллели спроецируются на эту плоскость без искажения. Меридиан q, расположенный во фронтальной плоскости (1), называется главным меридианом. Он проецируется без искажения на плоскость проекций П2 и определяет очертание поверхности на этой плоскости. Для построения очертания поверхности надо вращать точки образующей кривой l до их совпадения с плоскостью главного меридиана . В соответствии с рисунком 54 получена точка L, принадлежащая главному меридиану и, соответственно, очертанию поверхности. Именно таким образом строится очертание поверхности вращения по её определителю: в плоскость главного меридиана выводится определённое количество точек, соединяемых затем плавной кривой линией.

При вращении кривой второго порядка вокруг её оси образуется поверхность вращения второго порядка.

Рассматриваются следующие типы поверхностей второго порядка:

а)сфера, которая образуется вращением окружности вокруг собственной оси в соответствии с рисунком 55;

б)параболоид вращения, образуемый вращением параболы вокруг собственной оси в соответствии с рисунком 56;

в)эллипсоид вращения, который образуется вращением эллипса вокруг собственной оси. Принимая за ось вращения малую либо большую ось эллипса, получаем соответственно сжатый или вытянутый эллипсоиды вращения в соответствии с рисунками 57, а и 57, б.;

г)однополостный гиперболоид вращения, который образуется вращением гиперболы вокруг её мнимой оси в соответствии с рисунком 58, а;

д)двухполостный гиперболоид вращения, образуемый вращением гиперболы вокруг её действительной оси в соответствии с рисунком 58, б;

е)конус вращения, образуемый вращением прямой линии вокруг неподвижной оси, при этом образующая во всех своих положениях пересекает ось в некоторой точке, называемой вершиной конуса;

ж)цилиндр вращения, образуемый вращением прямой линии вокруг неподвижной оси и расположенной параллельно этой оси.

11) Построение линии пересечения гранной поверхности с плоскостью выполнено в соответствии с рисунком 74.

Сечение многогранника может быть ограничено только отрезками прямых. Число сторон такого многогранника равно числу граней многогранника, пересекаемых плоскостью. Вершинами многоугольника сечения являются точки пересечения рёбер многогранника с секущей плоскостью. Следовательно, число вершин многоугольника равно числу рёбер многогранника, пересекаемых плоскостью.

Следует заметить, что вершинами многоугольника сечения являются точки пересечения секущей плоскости с рёбрами многогранника в собственном смысле. Это значит, что точки пересечения секущей плоскости с продолжением рёбер не могут являться вершинами многоугольника сечения как не принадлежащие поверхности многогранника, но могут быть использованы для удобства построения.

Аналогично, сторонами многоугольника сечения могут являться только те отрезки прямых, которые принадлежат граням в собственном смысле.

В данном примере пирамида пересекается с фронтально проецирующей плоскостью (1). Решение получается простым, поскольку фронтальная проекция сечения вырождается в отрезок прямой линии, совпадающей с фронтальным следом плоскости . Горизонтальной проекцией сечения является пятиугольник с вершинами 11, 21, 41, 51, 31.

С ечение поверхности плоскостью положено в основу ГОСТ 2.305-68 (раздел- разрезы, сечения).

12) Задача решается способом секущих плоскостей-посредников. Следует отметить, что у обеих поверхностей имеется общая плоскость симметрии, которая проходит через ось симметрии конуса и центр симметрии сферы. Эта плоскость обозначена Ф(Ф1). Она определяет опорные точки 1(12) – высшую и 2(22) – низшую. Горизонтальные проекции этих точек 11 и 21 расположены соответственно на линии Ф1. К опорным следует отнести и точки А, В, определяющие видимость линии пересечения данных поверхностей на горизонтальной плоскости проекций П1. Эти точки находятся в плоскости экватора Γ(Γ2) сферической поверхности, которая пересекает конус по окружности радиуса R, а сферу по экватору. В пересечении горизонтальных проекций этих линий получаем точки А1 и В1. Фронтальные проекции А2 и В2 точек видимости А и В определяются соответственно на линии Γ2.

Далее определяем нужное количество промежуточных (произвольных, случайных) точек, используя для этого вспомогательные горизонтальные плоскости-посредники, одна из которых Γ(Γ2) показана на чертеже. С её помощью построены точки 3 и 4. Плоскость Γ(Γ2) пересекает конус и сферу по соответствующим окружностям, которые проецируются в натуральную величину на плоскость П1. Их пересечение позволяет определить первоначально горизонтальные проекции 31, 41 точек 3 и 4, а затем по линии связи фронтальные проекции этих точек соответственно на линии Γ2.

Построенные точки соединяют на обеих проекциях с учётом видимости плавной кривой с помощью лекала.

На фронтальной проекции половина кривой находится на задней стороне данных поверхностей. Но невидимая её часть закрывается видимой. На горизонтальной проекции видна часть кривой, на которой находятся точки 1, А, В, расположенные выше экватора сферы. Очерковая образующая фронтальной проекции конуса между точками 1 и 2 находится внутри сферы и изображена поэтому сплошной тонкой линией. Точно так же изображена часть линии очерка сферы, находящаяся внутри конуса. На горизонтальной проекции тонкой линией показана часть окружности экватора, находящаяся внутри конуса.

13)

14) Способ концентрических сфер применяется при следующих условиях:

1) пересекающиеся поверхности являются поверхностями вращения;

2) оси поверхностей пересекаются;

3) пересекающиеся оси образуют общую плоскость симметрии, параллельную плоскости проекций.

В рассматриваемом примере (рисунок 81) оси вращения данных конусов i, l пересекаются в точке О(О1, О2) и образуют общую плоскость симметрии Ф(Ф1), параллельную фронтальной плоскости проекций П2.

Вначале определяем опорные точки. Это наивысшая точка 1 и наинизшая точка 2, которые расположены в общей плоскости симметрии Ф(Ф1) и получаются в пересечении главных меридианов данных конусов. Исходя из этого отмечаем фронтальные проекции 12 и 22 точек 1 и 2. Горизонтальные проекции 11 и 21 этих точек отмечаем на линии l1 ≡ Ф1. К опорным отнесём и точки, полученные при помощи вспомогательной секущей сферы наименьшего радиуса, проведённой из точки О2. Для определения этого радиуса нужно из точки О2 провести две нормали к очерковым линиям поверхностей и выбрать большую из них. Если в качестве радиуса вспомогательной сферы взять меньшую нормаль, то одна из данных поверхностей с такой сферой не пересечётся. В данном примере с помощью сферы наименьшего радиуса построены точки А и А. Эта сфера (на чертеже она изображается окружностью) касается конуса с осью вращения i, а конус с осью вращения l пересекает. И касание, и пересечение осуществляются по окружностям, которые на фронтальной проекции изображаются отрезками. В их пересечении получаются точки А2 ≡ А2.