Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химия ОС 2.doc
Скачиваний:
31
Добавлен:
07.05.2019
Размер:
4.34 Mб
Скачать

Порядок выполнения работы

Определение сухого остатка

В прокаленную, охлажденную и взвешенную формовую или кварцевую чашку помещают 30...35 мл анализируемой пробы воды. Воду выпаривают на водяной бане досуха. Затем переносят чашку с остатком в сушильный шкаф и высушивают до постоянной массы при 103...105 °С. Содержание сухого остатка, мг/л, рассчитывают по формуле

,

где а – масса чашки с сухим остатком, мг; b – масса пустой чашки, мг; V - объем анализируемой пробы воды, мл.

Определение прокаленного остатка

Чашку с сухим остатком помещают в предварительно разогретую до 600 °С муфельную печь и прокаливают 15...20 мин. Затем охлаждают чашку немного на воздухе, затем в эксикаторе до комнатной температуры. После полного охлаждения чашу с осадком взвешивают. Прокаливание повторяют до достижения постоянной массы. Расчет ведут также как и для сухого остатка.

Определение общей жесткости воды

В колбу для титрования наливает 100 мл анализируемой пробы, добавляют 3 мл аммиачного буферного раствора и 7... 8 капель индикатора – темно-синего хрома, который окрашивает воду в розово-красный цвет. Затем из бюретки прибавляют по каплям раствор трилона Б, все время тщательно помешивая воду в колбе стеклянной палочкой до перехода цвета раствора из розово-красного в сине-сиреневый.

Особенно интенсивно следует помешивать воду к концу определения, так как переход окраски наступает не мгновенно, а постепенно. Последние капли раствора нужно добавлять медленно, с некоторыми промежутками, не прекращая помешивания воды в колбе.

Общая жесткость испытуемой пробы (мг-экв/л) численно равна объему (в мл) израсходованного 0,1 н. раствора трилона Б, пошедшего на титрование 100 мл воды.

Определение карбонатной жесткости воды

В колбу для титрования наливают 100 мл испытуемой воды и добавляют из капельницы с этикеткой "Метилоранж" две капли раствора, от чего вода окрашивается в соломенно-желтый цвет.

Затем осторожно, по каплям в воду добавляют раствор серной кислоты, одновременно помешивая стеклянной палочкой. Прибавление кислоты прекращают с последней каплей, от которой соломенно-желтый цвет воды переходит в оранжевый. Карбонатная жесткость пресной воды (в мг-экв/л) численно равна объему (в мл) израсходованной 0,1 н. кислоты, пошедшей на титрование 100 мл воды.

Пример. Взято 100 мл воды для определения в ней карбонатной жесткости, израсходовано 1,7 мл серной кислоты. Карбонатная жесткость воды равна 1,7 мг-экв/л.

Определение некарбонатной жесткости воды

Величину некарбонатной жесткости определяют как разность между значениями общей и карбонатной жесткости.

Требования к отчету

В отчете привести название, цель и сущность работы, результаты расчета сухого и прокаленного остатка, видов жесткости. По результатам анализа сделать вывод о принадлежности исследуемой воды к определенной группе жесткости. Сделать предположение о характере подстилающих пород и поступающих стоков.

Лабораторная работа № 6 Определение содержания анионов в поверхностных водах

В поверхностных водах, кроме анионов HCO3-, СО32-, OН-, которые определялись в предыдущих работах, содержится ряд других анионов (SO42-, Cl-, HSiO3-, NO3-, PO43- и др.).

Сульфат-ионы поступают в природные воды в результате растворения гипсовых пород, мирабилита, окисления сульфидов, органических серо-содержащих веществ. Содержание сульфат-ионов может быть достаточно высоким в водах атмосферных осадков вследствие загрязнения воздуха промышленными выбросами. Предельное содержание сульфат-ионов в воде источника централизованного водоснабжения – до 500 мг/л.

Хлориды по общему содержанию в природных водах занимают первое место среди анионов. Они появляются в природных водах при растворении горных пород, содержащих хлориды, выбрасываются в большом количестве при извержении вулканов, являются постоянным компонентом стоков многих предприятий. Содержание их колеблется от десятых долей до тысячи мг/л. Однако в воде рек концентрация хлоридов невелика – она превышает обычно 10-30 мг/л, поэтому повышенное количество хлоридов указывает на загрязнение источника сточными водами. Концентрация хлорид-ионов не должна превышать для питьевой воды 350 мг/л.

Лимитирование верхнего предела концентраций SO42- и Cl- обусловлено тем, что более высокие концентрации этих ионов придают воде солоноватый вкус и могут вызвать нарушение в работе желудочно-кишечного тракта у людей. При некоторых соотношениях SO42- и Cl- вода становится агрессивной по отношению к некоторым типам бетона.

В природных водах кремниевая кислота может находиться в формах метакремниевой H2SiO3 (H2О·SiO2), ортокремниевой H4SiO4 (SiO2·2H2О) и поликремниевой H2SiO5 (2SiO2·H2О) кислот. Все эти кислоты при обычных для природных вод значениях рН малорастворимы и образуют в воде коллоидные растворы. Силикаты – нежелательная примесь в воде, питающей котлы, так как дает силикатную накипь на стенках котлов.

Нитраты могут появляться в воде при разложении органических остатков, поступать с атмосферными осадками или стоками, содержащими органические вещества. Содержание их в чистых водоемах оценивается десятыми и сотыми долями мг/л. Допустимое содержание нитратов (по NO3-) в воде питьевого назначения – 45 мг/л.

Присутствие ряда анионов в воде является необходимым для питания растений, нормальной жизнедеятельности плавающих форм живых организмов. Однако избыток анионов может угнетать живые организмы. Избыток нитрат- и фосфат-ионов может привести к эвтрофикации водоемов. Содержание фосфатов в поверхностных водах обычно невелико – сотые и тысячные доли мг/л. Допустимое содержание в питьевой воде – 3,5 мг/л.

Под эвтрофикацией вод понимают обогащение их биогенными элементами (азотом, фосфором, углеродом или веществами, их содержащими); следствие эвтрофикации – интенсивный рост водорослей и других растений, накопление в водоемах органических веществ и других продуктов отмирания организмов. Это создает условия для увеличения численности организмов-редуцентов, питающихся мертвым органическим веществом и разлагающих его до исходных минеральных элементов и СО2. Редуценты в процессе жизнедеятельности интенсивно поглощают кислород. Конечный результат явленийобескислороживание водной среды и замена аэробных (с участием кислорода) процессов на анаэробные, протекающие в бескислородной среде. Результат анаэробных процессов – выделение в среду сероводорода, метана и других ядовитых загрязняющих веществ. Таким образом, обогащение вод необходимыми для жизни химическими элементами вызывает вторичный крайне отрицательный экологический и санитарно-гигиенический эффект. Явление вызывается природными и антропогенными факторами. Различия в их действии связаны не только с интенсивностью, но и с механизмом отдельных процессов. При эвтрофикации развиваются сине-зеленые водоросли, многие из которых ядовиты. Выделяемые ими вещества относятся к группе фосфор- и серосодержащих органических соединений (нервнопаралитических ядов).

Природная эвтрофикация прoтекает как правило, медленно и зависит от минералогического состава пород и грунтов, окружающих водоемы.

Водоемы с большими запасами воды и расположенные сре­ди кристаллических пород мало подвержены эвтрофикации. Они в те­чение тысячелетий могут оставаться в олиготрофиом (бедном пита­тельными веществами) состоянии. Пример такого водоема – озеро Байкал. Медленная эвтрофика­ция характерна также для озер ледникового происхождения. Это основные резервуары озерной чистой воды. Такие водоемы вмес­те с тем в силу малой насыщенности жизнью и низких температур имеют слабую способность к самоочищению. Поэтому они весь­ма чувствительно реагируют на загрязнения.

Антропогенной эвтрофикации в настоящее время подвержены прак­тически все внутренние водоемы и некоторые моря. Факторами ее являются минеральные удобрения, а в ряде случаев моющие средства, компоненты которых – поверхностно-активные вещества (ПАВ), изготавливаемые на фосфорной основе. Источниками эвтрофикации вод являются также бытовые и промышленные стоки, животноводческие комплексы, подогретые воды, рекреационные воздействия, преобразования текущих вод в стоячие и другие результаты человеческой деятельности.

Цель работы: Определить содержание основных анионов в природной воде, дать характеристику исследуемой воде, указать возможные пути и последствия от поступления анионов в данный водоем.

Оборудование: нитратомер ЭКО-01, нитратоселективный и хлорсеребряный электроды, пенал для определения фосфатного числа, бюретки для титрования, оловянная палочка.

Реактивы: 0,028 н раствор нитрата серебра, раствор хромовокислого калия, раствор сульфомолибдата аммония, раствор KNO3 − 0,1 н.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]