Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТИП ГОСы (49 вопросов).doc
Скачиваний:
60
Добавлен:
26.04.2019
Размер:
2.57 Mб
Скачать

8. Свойства объектов измерения.

Объектами измерений могут быть любые параметры физических объектов и процессов, описывающие их свойства.

  1. Измерения геометрических величин: длин; диаметров; углов; отклонений формы и расположения поверхностей; шероховатости поверхностей; зазоров.

  2. Измерения механических и кинематических величин: массы; силы; напряжений и деформаций; твердости; крутящих моментов; скорости движения и вращения; кинематических параметров зубчатых колёс и передач.

  3. Измерения параметров жидкости и газа: расхода, уровня, объема; статического и динамического давления потока; параметров пограничного слоя.

  4. Физико-химические измерения: вязкости; плотности; содержания (концентрации) компонентов в твердых, жидких и газообразных веществах; влажности; электрохимические измерения.

  5. Теплофизические и термодинамические измерения: температуры; давления, тепловых величин; параметров цикла; к.п.д.

  6. Измерения времени и частоты: измерение времени и интервалов времени; измерение частоты периодических процессов.

  7. Измерения электрических и магнитных величин: напряжения, силы тока, сопротивления, емкости, индуктивности; параметров магнитных полей; магнитных характеристик материалов.

  8. Радиоэлектронные измерения: интенсивности сигналов; параметров формы и спектра сигналов; свойств веществ и материалов радиотехническими методами.

  9. Измерения акустических величин: акустические - в воздушной, газовой и водной средах; акустические - в твердых средах; аудиометрия и измерения уровня шума.

  10. Оптические и оптико-физические измерения: измерения оптических свойств материалов; энергетических параметров некогерентного оптического излучения; спектральных, частотных характеристик, поляризации лазерного излучения; параметров оптических элементов, оптических характеристик материалов; характеристик фотоматериалов.

  11. Измерения ионизирующих излучений и ядерных констант: дозиметрических характеристик ионизирующих излучений; спектральных характеристик ионизирующих излучений; активности радионуклидов; радиометрических характеристик ионизирующих излучений.

Целью измерения является получение информации о размере физической величины.

Под физической величиной подразумевается свойство, общее в качественном отношении многим объектам, но в количественном отношении индивидуальное для каждого объекта. Леонард Эйлер определил это так: "величиной называется все, что способно увеличиваться или уменьшаться, или то, к чему можно нечто прибавить или отчего можно отнять".

Размер есть количественная характеристика измеряемой физической величины.

На практике появляется необходимость проводить измерения величин характеризующих свойства явлений и процессов. Некоторые свойства проявляются качественно, другие количественно. Отображение свойств в виде множества элементов или чисел или условных знаков представляет собой шкалу измерений этих свойств.

Шкала измерений — это упорядоченная совокупность значений физической величины, которая служит основой для ее измерения. Поясним это понятие на примере температурных шкал. В шкале Цельсия за начало отсчета принята температура таяния льда, а в качестве основного интервала (опорной точки) — температура кипения воды. Одна сотая часть этого интервала является единицей температуры (градус Цельсия).

Различают несколько типов шкал: наименований, порядка, разностей (интервалов), отношений и абсолютные и др.

Шкалы наименований характеризуются только отношением эквивалентности (равенства). Шкала наименований это - качественная шкала, она не содержит количественную информацию, в ней нет нуля и единиц измерений. Элементы этих шкал характеризуются только соотношениями эквивалентности (равенства) и сходства конкретных качественных проявлений свойств. Примером может служить атлас цветов (шкала цветов). Процесс измерения заключается в визуальном сравнении окрашенного предмета с образцами цветов (эталонными образцами атласа).

Шкалы порядка - характеризуют значение измеряемой величины в баллах. Эти шкалы описывают свойства, для которых имеют смысл не только соотношения эквивалентности, но и соотношения порядка по возрастанию или убыванию количественного проявления свойства. Характерным примером шкал порядка являются существующие шкалы чисел твердости тел, шкалы баллов землятрясений, шкалы баллов ветра, шкала оценки событий на АЭС и т.п. Узкоспециализированные шкалы порядка широко применяются в методах испытаний различной продукции.

В этих шкалах также нет возможности ввести единицы измерений из-за того, что они не только принципиально нелинейны, но и вид нелинейности может быть различен и неизвестен на разных ее участках. Результаты измерений в шкалах твердости, например, выражаются в числах твердости по Бринеллю, Виккерсу, Роквеллу, Шору, а не в единицах измерений. Шкалы порядка допускают монотонные преобразования, в них может быть или отсутствовать нулевой элемент.

Шкалы разностей (интервалов) - отличаются от шкал порядка тем, что для описываемых ими свойств имеют смысл не только соотношения эквивалентности и порядка, но и суммирования интервалов (разностей) между различными количественными проявлениями свойств. Характерный пример - шкала интервалов времени.

Интервалы времени (например, периоды работы, периоды учебы) можно складывать и вычитать, но складывать даты каких-либо событий бессмысленно.

Другой пример, шкала длин (расстояний) пространственных интервалов определяется путем совмещения нуля линейки с одной точкой, а отсчет делается у другой точки. К этому типу шкал относятся и шкалы температур по Цельсию, Фаренгейту, Реомюру.

Шкалы разностей имеют условные (принятые по соглашению) единицы измерений и нули, опирающиеся на какие-либо реперы.

В этих шкалах допустимы линейные преобразования, в них применимы процедуры для отыскания математического ожидания, стандартного отклонения, коэффициента ассиметрии и смещенных моментов.

Шкалы отношений имеют естественное нулевое значение, а единица измерений устанавливается по согласованию. Например, шкала массы, начинаясь от нуля, может быть градуирована по-разному в зависимости от требуемой точности взвешивания. Сравните бытовые и аналитические весы. К множеству количественных проявлений в этих шкалах применимы соотношения эквивалентности и порядка - операции вычитания и умножения, (шкалы отношений 1-го рода - пропорциональные шкалы), а во многих случаях и суммирования (шкалы отношений 2-го рода - аддитивные шкалы).

Массы любых объектов можно суммировать, но суммировать температуры разных тел нет смысла, хотя можно судить о разности и, отношении их термодинамических температур. Примерами шкал отношений являются шкалы массы (2-го рода), термодинамическая температурная шкала (1-го рода).

Шкалы отношений широко используются в физике и технике, в них допустимы все арифметические и статистические операции.

Абсолютные шкалы обладают всеми признаками шкал отношений, но в них дополнительно существует естественное однозначное определение единицы измерения. Такие шкалы используются для измерений относительных величии (отношений одноименных величин: коэффициентов усиления, ослабления, КПД, коэффициентов отражений и поглощений, амплитудной модуляции и т.д.).

9. Структурные схемы и метрологические характеристики измерительных систем..

Измерительные устройства состоят из некоторого числа элементов (составных частей), предназначенных для выполнения таких, функций, как: преобразование поступающего сигнала по форме или виду энергии, успокоение колебаний, защита от помехонесущих полей, коммутация цепей, представление информации и т.п. к элементам измерительных устройств относят: опоры, направляющие, пружины, магниты, контакты, множительно-передаточные механизмы и т.п.

Основные составные части:

Преобразовательный элемент – элемент СИ, в котором происходит одно из ряда последовательных преобразований величины;

Измерительная цепь – совокупность преобразовательных элементов Си,

обеспечивающая осуществление всех преобразований сигнала змерительной

информации;

Чувствительный элемент – первый в измерительной цепи реобразовательный

элемент, находящийся под непосредственны воздействием измеряемой величины;

Измерительный механизм – часть конструкции Си, состоящая из элементов,

взаимодействие которых вызывает из взаимное перемещение;

Отсчетное устройство – часть конструкции Си, предназначенное для регистрации показаний.

Регистрирующее устройство – часть регистрирующего измерительного прибора, предназначенная для регистрации показаний.

На рисунке ниже приведены схемы измерительных устройств прямого действия (прямого преобразования) и сравнения (уравновешивающего или компенсационного преобразования).

Структурные схемы СИ прямого действия.

Структурные схемы СИ сравнения.

Работа этих типов приборов. На первом рисунке измеряемая физическая величина Х поступает в чувствительный элемент 1, где преобразуется в другую величину, удобную для дальнейшего использования (ток, напряжение, давление, перемещение, сила), и поступает на промежуточный преобразовательный элемент 2, который обычно либо усиливает поступающий сигнал, либо преобразует его по форме. (Элемент 2 может отсутствовать). Выходной сигнал элемента 2 поступает к измерительному механизму 3, перемещение элементов которого определяется с помощью отсчетного устройства 4. Выходной сигнал Y (показание), формируемый измерительным прибором, может быть воспринят органами чувств человека.

Показаниями называют значение величины, определяемое по счетному устройству и выраженное в принятых единицах этой величины. Отсчетное

устройство представляет собой цифровое табло или, в подавляющем большинстве случаев, шкалу с указателем. Для шкальных от счетных устройств принято использовать ряд понятий, сущность большинства, из которых легко установить по рисунку ниже.

Схема измерительного прибора, основанного на методе уравновешивающего

преобразования, показана на 3-м рисунке выше. Отличительной особенностью таких приборов является наличие отрицательной обратной связи. Здесь сигнал Z, возникающий на выходе чувствительного элемента, поступает на преобразовательный элемент 5, который способен осуществлять сравнение двух величин (элемент сравнения, ком парирующий элемент), поступающих на его вход.

Кроме величины Z на выход элемента 5 подается величина с противоположным знаком Zур (уравновешивающий сигнал), которая формируется на выходе обратного преобразовательного элемента 6. На выходе элемента 5 формируется сигнал, пропорциональный разности значения величин Z и Zур. Этот сигнал поступает в промежуточный преобразовательный элемент 2, выходной сигнал которого поступает одновременно на измерительный механизм 3 и на вход обратного преобразовательного элемента 6. В зависимости от типа промежуточного преобразовательного элемента 2 при каждом значении измеряемого параметра и соответствующем ему значении Z разность Z-Zур, поступающая на вход элемента 5, может сводиться к нулю или иметь некоторое малое значение, пропорциональное измеряемой величине.

На остальных рисунках приведены структурные схемы измерительных преобразователей, основанных соответственно на методах прямого и уравновешивающего преобразователя. В этих схемах отсутствует измерительный механизм и отсчетное устройство. Этим определяется тот факт, что сигнал измерительных преобразователей имеет форму, недоступную для восприятия человеком. В то же время в составе измерительных преобразователей, как правило, имеется оконченный преобразовательный элемент 7, который формирует выходной сигнал (усиливает его по мощности, преобразует в частоту колебаний и т.д.) таким образом, что его можно передавать на расстояние, хранить.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]