Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ДМ.doc
Скачиваний:
56
Добавлен:
17.12.2018
Размер:
1.87 Mб
Скачать

5 Опоры валов и осей

Лекция 23

Опоры валов и осей: сравнительная оценка подшипников качения и

скольжения. Приближенный расчет подшипников скольжения

Подшипники служат опорами для валов и вращающихся осей. Они восприни­мают нагрузки, приложенные к валу, передают их на корпус машины и сохраняют заданное положение оси вращения вала. В зависимости от рода трения подшипники делятся на подшипники качения и подшипники скольжения.

В качестве опор валов подшипники скольжения используются в конструкциях, в которых применение подшипников качения затруднено или недопустимо по ряду причин:

- необходимость выполнения диаметрального разъема по условиям сборки, (например, для коленчатых валов);

- особо высокоскоростные подшипники, в условиях работы которых долговечность подшипников качения резко сокращается;

- работа в воде, агрессивных средах, в которых подшипники качения неработоспособны из-за коррозии.

К недостаткам подшипников скольжения можно отнести:

- тяжелонагруженные подшипники нуждаются в принудительном подводе под давлением смазочного материала для поддержания режима жидкостного трения и отвода выделяющейся теплоты;

-при работе в условиях пониженных температур возрастает пусковой момент из-за загустения масла.

В простейшем виде подшипник скольжения представляет собой втулку (вкладыш), встро­енную в корпус машины.

1 - втулка (вкладыш)

2 - смазочная канавка

3 - стопорный винт

4 - корпус машины

5 - опорный участок

вала, называемой цапфой.

Рисунок 60

Цапфу, передающую радиальную нагрузку, называют шипом, если она расположена на конце вала, и шейкой при расположении в середине вала. Цапфу, передающую осевую нагрузку, называют пятой, а опору - подпятником. Подпятник обычно работает в паре с радиальным подшипником.

Работа трения в подшипнике скольжения зависит от ряда параметров:

- удельной нагрузки на подшипник;

- угловой скорости цапфы;

- наличия и типа смазочного материала;

- физико-механических характеристик контактирующих поверхностей.

Работа трения нагревает подшипник, а с увеличением температуры понижается вязкость масла и увеличивается вероятность заедания цапфы в подшипнике. Поэтому температура в подшипнике не должна превышать некоторого предельного значения.

На практике стремятся реализовать в подшипнике жидкостное трение, когда процесс трения переносится в слой жидкого смазочного материала, обладающего невысоким сопротивлением сдвигу и предохраняющего поверхности деталей от повреждения. Значение коэффициента жидкостного трения находится в пределах 0,001.. .0,005.

При переходе на полужидкостное трение в подшипнике будет смешанное трение - одновременно жидкостное и граничное. Граничным называют трение, при котором трущиеся поверхности покрыты тончайшей пленкой смазки, образовавшейся в результате действия молекулярных сил.

Классификация подшипников качения. Условное обозначение подшипников качения. Схемы установки подшипников на валах

Подшипник качения представляет собой готовый узел, основным элементом которого являются тела качения (1), установленные между внутренним (2) и на­ружным (3) кольцами и удерживаемые на определенном расстоянии друг от друга обоймой, называемой сепаратором (4). Подшипники качения стандартизованы и изготавливаются в массовом производстве на крупных специализированных заводах.

Рисунок 61

Подшипники качения имеют следующие достоинства по сравнению с подшипниками скольжения:

- малые потери на трение, незначительный нагрев, малые пусковые моменты;

- малый расход смазки;

- простота обслуживания и замены подшипника;

- меньшие габаритные размеры в осевом направлении;

- сравнительно малая стоимость вследствие массового производства.

Недостатки:

- малонадежны в высокоскоростных приводах из-за опасности разрушения сепаратора от действия центробежных сил;

- сравнительно большие радиальные размеры;

- шум при больших скоростях;

- высокая чувствительность к ударным и вибрационным нагрузкам вследс­твие большой жесткости конструкции подшипника.

Подшипники качения классифицируется по различным признакам:

1) по форме тел качения:

- шариковые (а);

- роликовые (мо­гут быть с цилиндрическими короткими (б) и длинными (в) роликами, витыми (г), коническими (д), бочкообразными (е) и игольчатыми роликами (ж));

Рисунок 62

2) по направлению воспринимаемой нагрузки:

- радиальные;

- радиально-упорные;

- упорно-радиальные;

- упорные;

Рисунок 63

3) по относительным габаритным размерам подшипники подразделяются на серии:

- сверхлегкую;

- особо легкую (1);

- легкую (2);

- среднюю (3);

- тяжелую (4);

- легкую широкую (5);

- среднюю широкую (6);

4) по точности изготовления подшипники качения подразделяются на классы:

- нормального (0);

- повышенного (6);

- высокого(5);

- особо высокого(4);

- сверхвысокого(2).

Подшипники маркируют нанесением на торец кольца ряда цифр. Две первые цифры справа обозначают его внутренний диаметр. Для подшипников с внутренним диаметром от 20 до 495мм размер внутреннего диаметра определяется умно­жением указанных двух цифр на 5. Третья цифра справа обозначает серию под­шипника. Четвертая цифра справа обозначает тип подшипника. Обозначается цифрами от 0 до 9.

Пример: Подшипник 7306. Здесь 06 указывает на то, что внутренний диаметр равен 30мм; 3 - средняя серия; 7 - подшипник является роликовым коническим. Класс точности маркируется слева от условного обозначения подшипника. Для нормального класса 0 не маркируется.

Можно выделить следующие основные конструктивные типы подшипников:

- роликовый радиальный подшипник с цилиндрическими роликами. Восприни­мает только радиальную нагрузку. Допус­кает осевое взаимное смещение колец. Воспринимает значительно большие наг­рузки (в 1,7 раза), чем шариковые. Пло­хо работает при перекосах вала;

Рисунок 64

- шариковый радиальный одноряд­ный подшипник. Предназначен для радиальной наг­рузки, но может воспринимать и осевую в пределах 70% от неиспользованной ради­альной. Допускает перекосы вала до 0,25°.

Рисунок 65

- шариковый радиально-упорный подшипник. Предназначен для комбинированной нагрузки. Подшипник характеризуется углом контакта . Чем больше этот угол, тем выше осевая грузоподъемность. Эти подшипники выпускаются с углами кон­такта 12о, 26о, 36°.

Рисунок 66

- роликовый конический подшипник. Воспринимает одновременно радиальную и осевую нагрузку. Обладает большой грузоподъемностью. Не допускает переко­са колец. Эти подшипники, как и предыдущие, уста­навливают попарно, они должны быть наг­ружены осевой силой - внешней или спе­циально созданной при сборке. Угол кон­такта (половина угла при вершине конуса дорожки качения наружного кольца) в пределах 10...16°.

Рисунок 67

Лекция 24

Подбор подшипников качения по статической и динамической

грузоподъемности. Частные случаи определения эквивалентной

динамической нагрузки на подшипники

Основными критериями работоспособности подшипников качения являются долговечность по усталостному выкрашиванию и статическая грузоподъемность по пластическим деформациям. Расчет на долговечность выполняют для подшипников, вращающихся с угловой скоростью ω≥0,105 рад/с. Невращающиеся или медленно вращающиеся подшипники (с угловой скоростью ω<0,105) рассчитывают на статическую грузоподъемность.

Проверка и подбор подшипников по статической грузоподъемности.

Если подшипник воспринимает нагрузку находясь в неподвижном состоянии или вращаясь с частотой менее 1 об/мин, то подшипник выбирают по статической грузоподъемности, поскольку при указанном режиме работы исключается усталостное выкрашивание рабочих поверхностей тел и дорожек ка­чения.

Условие проверки:

Ро< Со,

где Ро- эквивалентная статическая нагрузка;

Со- статическая грузоподъемность ( по каталогу на подшипники).

Под статической грузоподъемностью понимают такую статическую нагрузку, которой соответствует общая остаточная деформация тел качения и колец в наи­более нагруженной точке контакта, равная 0,0001 диаметра тела качения.

Эквивалентная статическая нагрузка определяется по формуле:

Ро = X0∙Fr + Y0∙Fa,

где Хо и Yo — коэффициенты радиальной и осе­вой статических нагрузок

(по каталогу).

Выбор подшипников по динамической грузоподъемности для предупреждения усталостного разрушения.

Динамическая грузоподъемность и долговечность (ресурс) подшипника

связаны эмпирической зависимостью

L = (С/Р)р,

где L - ресурс в млн. оборотах;

С - паспортная динамическая грузоподъемность подшипника - это такая постоянная нагрузка, которую подшипник может выдержать в течение одного млн. оборотов без появления признаков усталости не менее чем у 90% из опреде­ленного числа подшипников, подвергающихся испытаниям. Значения С приведе­ны в каталогах;

р - показатель степени кривой усталости (р=3 - для шариковых подшипников, р=10/3 - для роликовых .

Р - эквивалентная (расчетная) динамическая нагрузка на подшипник. Для перехода от количества млн. оборотов в ресурс в часах запишем:

Lh= 106∙L/(60∙n), ч.

Для радиальных шариковых и радиально-упорных шариковых и роликовых подшипников эквивалентную нагрузку определяют по формуле:

Р = ( X∙V∙Fr + Y∙Fa )∙Kb∙KT,

где Fr и Fa- радиальная и осевая нагрузки на подшипник;

V- коэффициент вращения кольца (V =1 при вращении внутреннего кольца, V =1,2 - при вращении наружного кольца);

Кб - коэффициент безопасности, учитывающий характер внешних нагрузок;

Кт - температурный коэффициент;

X и Y - коэффициенты соответственно радиальной и осевой нагрузок.

Для подшипников с цилиндрическими роликами формула для определения эк­вивалентной динамической нагрузки имеет вид:

Р = Fr∙V∙Kb∙KT.

Значения коэффициентов X и Yберут в зависимости от значения отношения Fa/ V∙Fr . Осевая сила не оказывает влияния на величину эквивалентной нагруз­ки до тех пор, пока величина отношения не превысит определенного значения коэф-фициента влияния осевого нагружения e. Поэтому при Fa/V∙Fre расчет ведут на действие только радиальной нагрузки, т.е. X=l, Y=0. Если Fa/V∙Fr>e, то X и Y берут в справочниках для конкретного подшипника. Нужно отметить, что коэффициент е для роликовых конических и шариковых радиально-упорных подшипников с углами контакта α>18° постоянен для конкретного подшипника независимо от нагрузки, а для шариковых однорядных подшипников с углом контакта 18° и меньше выбирается в зависимости от соотношения Fx/C0. Здесь Со- статическая грузоподъемность подшипника.

В радиально упорном подшипнике от действия радиальной силы возникает дополнительная осевая нагрузка S. Ее значение для шариковых радиально-упорных подшипников определяется S=e∙Fr, а для конических роликоподшипников - S=0,83∙e∙Fr. Выше отметили, что радиально-упорные подшипники устанавли­вают попарно. Существует несколько схем установки. Рассмотрим наиболее часто встречающуюся схему - установку подшипников с осевой фиксацией «враспор».

Рисунок 68

Торцы внутренних колец подшипников упираются в буртики вала, а торцы наружных колец - на элементы корпуса агрегата. Обозначим полные осевые нагрузки на подшипники через Fa1 и Fa2. Эти силы с одной стороны не могут быть меньше осевых составляющих от радиальных сил, т.е.

Fal ≥S1, Fa2 ≥Sa2

В то же время они должны быть не менее суммарных внешних осевых нагрузок на подшипники:

Fa1≥Fx + S2, Fa2≥S1-Fx.

Очевидно то, что большее значение из двух удовлетворяет оба неравенства.

Условие нагружения

Осевые нагрузки подшипников

S1< S2, Fx ≥0 или S1> S2, но Fx≥S1-S2

Fa1 = Fx + S2, Fa2 = S2

S1>S2, но FX≤S1 -S2

Fa1 = S1, Fa2 = S1 - Fx

Расчет подшипников качения на долговечность проводят в следующей последовательности:

- определяют радиальные опорные реакции для каждой опоры;

- выбирают схему расположения и тип подшипника исходя из условий работы, действующих нагрузок;

- по посадочному диаметру вала выбирают конкретный подшипник по каталогу и выписывают d, D, С, Со, X, Y, е;

- определяют эквивалентную динамическую нагрузку на подшипники:

Р = ( X∙V∙Fr + Y∙Fa )∙Kb∙KT;

- определяют расчетную долговечность наиболее нагруженного подшипника:

Lh= ( С/Р )р∙106/(60∙n), час.

и сравнивают с требуемой долговечностью. Если Lh< Lh треб то можно:

а) сменить подшипник на более тяжелую серию;

б) сменить тип подшипника на более грузоподъемный;

в) увеличить диаметр вала;

г) предусмотреть меньший срок службы и замену подшипника.