Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Выс. матем..docx
Скачиваний:
358
Добавлен:
26.03.2016
Размер:
420.42 Кб
Скачать

9.Замена переменных в двойном интеграле. Переход к полярным координатам.

Для упрощения вычисления двойного интеграла часто применяют метод подстановки, то есть водят новые переменные. Пусть требуется вычислить двойной интеграл по Д ∫∫Дf(x, y) dxdy, произведём замену по формулам. x=φ(u, v) y=Ψ(u,v) при этом область Д є плоскость xoy переходя в область G є пл. uov. Вычислим определитель который наз. якобиан. J = |ðx/ðu ðx/ðv

ðy/ðu ðy/ðv|

тогда справедлива формула замены переменной ∫∫Дf(x, y) dxdy= ∫∫Gf(φ(u,v), Ψ(u,v))|J| dudv (1)

Наиболее распространенная система при вычисления двойного интеграла это полярные координаты (r, φ). Связь декартовых координат и полярных выражается формулами. x=r*cosφ, z≥0; y=r*sinφ, 0≤φ≤2π

Пологая u=r, v=φ; вычислим якобиан:

J = |ðx/ðr ðx/ðφ = |cosφ – r*sinφ = r*cos²φ+r*sin²φ=r; J=r; cos²φ+r*sin²φ=1

ðy/ðr ðy/ðφ| sinφ r*cosφ|

Формула замен переменных будет иметь вид ∫∫Lf(x, y) dxdy= ∫∫Gf(r,φ)*r drdφ

Область G в полярных координатах ограничена лучами φ=λ, φ=β и кривыми r=r1(φ)r=r2(φ). Область G правильная, т.к. лучь выходящий из полюса пересекает её границу не более чем в 2(·). Двойной интеграл в полярных сводят к повторному. ∫∫G f(r,y)*rdr* = ∫βλ dur2(φ) r1(φ). f(r, φ) *rdr(2)

Внешний интеграл всегда по φ в полярных координатах.

Замечание:

1)Переход к полярным координатам полезен когда под интегральная функция имеет вид f(x²+y²), а область интегрирования есть круг, сектор, кольцо и т.д.

2)На практике преобразование области Д в область G не выполняют, а совмещают декартову и полярную системы координат и находят нужные пределы по r и φ.

10.Геометрические и физические приложения двойного интеграла.

1.Объём тела – из геометрического смысла двойного интеграла известно, что V тела =0. Vт=∫∫Д f(x, y) dxdy (3)

Д – проекции тела на плоскость xoy.

2.Площадь плоской фигуры; Если в формуле (3) f(x, y)=1, то цилиндрическое тело превращается в прямой цилиндр с высотой H=1, V такого тела = площади основания Д, то есть ∫∫Д dxdy=SД в полярных координатах

∫∫Д rdrdφ=SД

3.Масса плоской пластинки из физического смысла двойного интеграла известно, что m=∫∫Д γ(x, y) dxdy, где γ(x, y) поверхностная плотность пластины.

4.Статические моменты и координаты центра тяжести плоской фигуры. Статические моменты фигуры Д относительно осей ох и оу =(Sx=∫∫Д y*γ(x, y) dxdy, Sy=∫∫Д x*γ(x, y) dxdy); где γ(x, y)

Координаты центра масс фигуры Д= xc=Sy/m; yc=Sx/m.

Применение двойного интеграла не исчерпывается приведенными формулами они значительно шире.

11.Тройной интеграл. Основные понятия, свойства тройного интеграла.

Теория тройного интеграла аналогично теории двойного интеграла поэтому рассмотрим её сокращённо. Пусть в замкнутой области V пространство охyz заданно непрерывна функция трёх переменных u=f(x, y, z):

1)Разобьем область V на n – частей Vi=i=1nˉ

2)Выберем в них произвольную (·) Mi (xi, y1, zi)

3)Вычислим значение функции u в (·)(Mi)=f(xi, yi, zi).

4)Составим интегральную сумму Σnn=1 f(xi, yi, zi)*ΔVi, где ΔViобъём элементарной области Vi.

Если сущ. предел экспериментальной суммы при n→∞ и он не зависит от выбора (·)Mi, то он наз. тройным интегралом от функции u=f(x,y.z), по области V. Обозначим: ∫∫∫Vf(x, y, z)dxdydz=limn→∞Σni=1 f(xi,yi,zi)*ΔVi (1)

Свойства тройного интеграла: обладает тем же свойствами, что и двойной.

1)∫∫∫V с*f(x, y, z)dxdydz=с∫∫∫V f*dxdydz обозначим dxdydz=dv

2)∫∫∫V (f+g)dv=.∫∫∫V f*dv+∫∫∫V g*dv

3)∫∫∫V f*dv = =.∫∫∫V1 f*dv+∫∫∫V2 g*dv = V=V1UV2

4)если f (x,y,z)≥0, то ∫∫∫V f*dv≥0

5)∫∫∫V dv = Vобъём тела V.

6) Теорема о среднем сущ. токая (·) M0 (x0, y0, z0) Є тему V, что ∫∫∫V fdv = f(x0, y0, z0) * Vт, Vт – объём тела.