Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Glava_7_Mekhanicheskie_volny.doc
Скачиваний:
49
Добавлен:
25.03.2016
Размер:
411.65 Кб
Скачать

§ 7.2 Волновое уравнение

Уравнение плоской волны (7. 5) - одно из возможных решений общего дифференциального уравнения с частными производными, описывающего процесс распространения возмущения в среде. Такое уравнение называется волновым. В уравнения (7.5) входят переменные t и х, т.е. смещение периодически меняется и во времени и в пространстве S = f(x, t). Волновое уравнение можно получить, если продифференцировать (7. 5) дважды по t:

И дважды по х

Подставляя первое уравнение во второе, получаем уравнение плоской бегущей волны вдоль оси X:

(7. 6)

Уравнение (7.6) называют волновым, и для общего случая, когда смещение является функцией четырех переменных, оно имеет вид

(7.7)

, где —оператор Лапласа

§ 7.3 Энергия волны. Вектора Умова.

При распространении в среде плоской волны

(7.8)

происходит перенос энергии. Мысленно выделим элементарный объем ∆V, настолько малый, что скорость движения и деформацию во всех его точках можно считать одинаковыми и равными соответственно

и (7.9)

Выделенный объём обладает кинетической энергией

(7.10)

m=ρ∆V — масса вещества в объеме ∆V, ρ — плотность среды].

(7.11)

Подставляя в (7.10) значение , получаем

(7.12)

Максимумы кинетической энергии приходятся на те точки среды, которые проходят положения равновесия в данный момент времени (S = 0), в эти моменты времени колебательное движение точек среды характеризуется наибольшей скоростью.

Рассматриваемый объем ∆V обладает также потенциальной энергией упругой деформации

[Е — модуль Юнга; — относительное удлинение или сжатие].

Учитывая формулу (7.8) и выражение для производной, находим, что потенциальная энергия равна

(7.13)

Анализ выражений (7.12) и (7.13) показывает, что максимумы потенциальной и кинетической энергий совпадают. Следует отметить, что это является характерной особенностью бегущих волн. Чтобы определить полную энергию объема ∆V, нужно взять сумму потенциальной и кинетической энергий:

(7.14)

Разделив эту энергию на объем, в котором она содержится, получим плотность энергии:

(7.15)

Из выражения (7.15) следует, что плотность энергии является функцией координаты х, т. е. в различных точках пространства она имеет различные значения. Максимального значения плотность энергии достигает в тех точках пространства, где смещение равно нулю (S = 0). Средняя плотность энергии в каждой точке среды равна

(7.16)

так как среднее значение

Таким образом, среда, в которой распространяется волна, обладает дополнительным запасом энергии, которая доставляется от источника колебаний в различные области среды.

Перенос энергии в волнах количественно характеризуется вектором плотности потока энергии. Этот вектор для упругих волн называют вектором Умова (по имени русского ученого Н. А. Умова). Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии, переносимой волной за единицу времени сквозь единичную площадку, расположенную перпендикулярно направлению распространения волны.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]