Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы по твердотельной электронике.doc
Скачиваний:
74
Добавлен:
10.06.2015
Размер:
1.93 Mб
Скачать
  1. Модель биполярного транзистора (модель Эбберса-Молла)

Простейшим вариантом низкочастотной модели Эберса – Мола является модель с идеальными p - n -переходами и двумя источниками тока.

Здесь  - коэффициент передачи коллекторного тока в инверсном режиме;  - токи, текущие через переходы, они определяются соотношениями:

,

 - обратные тепловые токи коллектора и эмиттера соответственно.  В некоторых источниках и справочниках используются обозначения для обратных тепловых токов в виде IЭБК и IКБК , причем эти тепловые токи измеряются при короткозамкнутых коллекторе для IЭБК и эмиттере для IКБК . Кроме того, в аналитических соотношениях иногда используются обозначения IЭ0 и IК0 , равные

,

отражающие обратные токи эмиттера и коллектора при обрыве коллектора или эмиттера соответственно.

В соответствии с первым законом Кирхгофа для токов эмиттера и коллектора схемы рис.3.11 имеем

(*)

Другая модель Эберса-Молла для идеального транзистора описывается одним управляемым источником тока.

(***)

Система (***) и позволяет построить модель с одним источником тока (рис.3.12).

Здесь  .

Эту модель как основу используют некоторые программы моделирования электронных схем, такие как Micro - Cap , Design Center и др.

  1. Биполярный транзистор как четырехполюсник, h-параметры. Графическое определение h -параметров.

Для транзистора как четырехполюсника характерны два значения тока I1 и I2 и два значения напряжения U1 и U2 

В зависимости от того, какие из этих параметров выбраны в качестве входных, а какие в качестве выходных, можно построить три системы формальных параметров транзистора как четырехполюсника. Это системы z-параметров, y-параметров и h-параметров.

Рис. 5.24. Эквивалентная схема четырехполюсника: а) биполярный транзистор в схеме с общей базой; б) биполярный транзистор в схеме с общим эмиттером

Система h-параметров

Система h-параметров используется как комбинированная система из двух предыдущих, причем из соображений удобства измерения параметров биполярного транзистора выбирается режим короткого замыкания на выходе (U2 = 0) и режим холостого хода на входе (I1 = 0). Поэтому для системы h-параметров в качестве входных параметров задаются ток I1 и напряжение U2, а в качестве выходных параметров рассчитываются ток I2 и напряжение U1, при этом система, описывающая связь входных I1, U2 и выходных I2, U1 параметров, выглядит следующим образом:

Значения коэффициентов в уравнении для h-параметров имеют следующий вид:

 - входное сопротивление при коротком замыкании на выходе;

 - выходная проводимость при холостом ходе во входной цепи;

 - коэффициент обратной связи при холостом ходе во входной цепи;

 - коэффициент передачи тока при коротком замыкании на выходе.

В таблице 2 приведены эти связи, позволяющие рассчитывать h-параметры для схемы включения с общей базой, если известны эти параметры для схемы с общим эмиттером.

Таблица 2. Связи между h параметрами

Для определения h-параметры необходимо задать рабочую точку, например А (IбА, UкэА), в которой требуется найти параметры.

Параметры h11э  и h12э находят по входной характеристики Uбэ =1(Iб)|Uкэ=const.

Определим h11э для заданной рабочей точки А (IбА, UкэА). На входной характеристике находим точку А, соответствующую заданной рабочей точке (рис.1.8). Выбираем вблизи рабочей точки А две вспомогательные точки А1 и А2 (приблизительно на одинаковом расстоянии), определим по ними Uбэ и Iб и рассчитаем входное дифференциальное сопротивление, по формуле:

h11э=(Uбэ /Iб)|Uкэ=const.

Приращения Uбэ и Iб выбирают так, чтобы не выходить за пределы линейного участка, их можно примерно принять за (10-20)% от значений рабочей точки.

Графическое определение параметра h12э =  Uбэ /Uкэ затруднено, так как семейство входных характеристик при различных Uкэ0 практически сливается в одну (рис.1.8.).

Параметры h22э и h21э определяются из семейства выходных характеристик транзистора Iк=1 (Uкэ) (рис.1.9).

Параметр h21э= (Iк /Iб) |Uкэ=const находится в заданной рабочей точке А (IбА, UкэА). Для нахождения приращений выбирают две вспомогательные точки А1 и А2 вблизи рабочей точки А при постоянном Uкэ =Uкэ0. Приращение тока базы Iб следует брать, как Iб=Iб2 – Iб1, где Iб2 и Iб1 определены как токи базы в точках А2 и А1. Этому приращению Iбсоответствует приращение коллекторного тока Iк = Iк2 – Iк1, где Iк2 и Iк1.определены в точках точках А2 и А1. Тогда дифференциальный коэффициент передачи тока базы рассчитаем по формуле h21э= (Iк /Iб) )|Uкэ=const .

Параметр h22э=(Iк/Uкэ)Iб=const  определяется по наклону выходной характеристики (рис.1.9) в заданной рабочей точке А (IбА, UкэА), при постоянном токе базы Iб. Для нахождения приращений выбирают две вспомогательные точки точки А*1 и А*2 . Для этих точек определяют U*кэ|Iб = IбА =Uк2 – Uк1 – приращение коллекторного напряжения, и приращение коллекторного тока I*к= I*к2 – I*к1. При этом из семейства выходных характеристик следует выбирать ту характеристику, которая снята при выбранном значение тока базы Iб=IбА .

Если рабочая точка не совпадает ни с одной траекторией приведенной на графике, то такую траекторию надо провести самостоятельно, между и по аналогии с соседними значения тока базы которых известно, и присвоить ей свое значение тока базы равное IбА .