Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teoria.docx
Скачиваний:
450
Добавлен:
22.05.2015
Размер:
2.7 Mб
Скачать

Потери в асинхронном двигателе

В обмотку статора из сети поступает мощность P1. Часть этой мощности идет на потери в стали Pсl, а также потери в обмотке статора Рэ1:

Оставшаяся мощность посредством магнитного потока передается на ротор и называется электромагнитной мощностью:

Часть электромагнитной мощности затрачивается на покрытие электрических потерь в обмотке ротора:

Оставшаяся мощность преобразуется в механическую, получившую название полной механической мощности:

Р2‘ = Рэм - Рэ2

Воспользовавшись ранее полученной формулой

запишем выражение полной механической мощности:

тогда

Рэ2 = SРэм,

то есть мощность электрических потерь пропорциональна скольжению.

Мощность на валу асинхронного двигателя P2 меньше полной механической мощности Р2’ на величину механических Рмех и добавочных Рдобпотерь:

Р2 = Р2’ — (Рмех + Рдоб)

Таким образом:

Р2 = Р1 - SP,

где SP = Pсl + Рэ1 + Рэ2 + Рмех + Рдоб.

Кпд асинхронного двигателя

Коэффициент полезного действия асинхронного двигателя есть отношение мощности на валу P2 к потребляемой мощности P1:

49. Области применения трехфазных асинхронных двигателей.

Область применения

В настоящее время асинхронные машины используются в основном в режиме двигателя. Машины мощностью больше 0.5 кВт обычно выполняются трёхфазными, а при меньшей мощности – однофазными.

Впервые конструкция трёхфазного асинхронного двигателя была разработана, создана и опробована нашим русским инженером М. О. Доливо-Добровольским в 1889-91 годах. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. На выставке было представлено три трёхфазных двигателя разной мощности. Самый мощный из них имел мощность 1.5 кВт и использовался для приведения во вращение генератора постоянного тока. Конструкция асинхронного двигателя, предложенная Доливо-Добровольским, оказалась очень удачной и является основным видом конструкции этих двигателей до настоящего времени.

За прошедшие годы асинхронные двигатели нашли очень широкое применение в различных отраслях промышленности и сельского хозяйства. Их используют в электроприводе металлорежущих станков, подъёмно-транспортных машин, транспортёров, насосов, вентиляторов. Маломощные двигатели используются в устройствах автоматики.

Широкое применение асинхронных двигателей объясняется их достоинствами по сравнению с другими двигателями: высокая надёжность, возможность работы непосредственно от сети переменного тока, простота обслуживания.

50.Устройство и принцип действия синхронной машины

Устройство синхронных машин. Синхронные машины вне зависимости от режима работы состоят из двух основных частей: неподвижного статора, выполняющего функции якоря и ротора, вращающегося внутри статора и служащего индуктором (рис. 4.1).

Статор трехфазной синхронной машины аналогичен статору трехфазного асинхронного двигателя. Он состоит из корпуса /, цилиндрического сердечника 2, набранного из отдельных пластин электротехнической стали, и трехфазной обмотки 3, уложенной в пазы сердечника.

Ротор синхронной машины представляет собой электромагнит постоянного тока, который создает магнитное поле, вращающееся вместе с ротором. Ротор имеет обмотку возбуждения 4, которая через специальные контактные кольца 5 питается постоянным током от выпрямителя или от небольшого генератора постоянного тока, называемого возбудителем.

В отечественной энергетике также используются синхронные машины с «бесщеточным» возбуждением. Обмотка ротора таких машин питается от выпрямителя, вращающегося вместе с ротором. Выпрямитель в свою очередь получает питание от возбудителя, имеющего вращающуюся вместе с ротором трехфазную обмотку, возбуждаемую неподвижными постоянными магнитами.

Роторы синхронных машин бывают двух типов: с явно выраженными и неявно выраженными полюсами.

Роторы с явно выраженными полюсами (рис. 4.1) применяются в сравнительно тихоходных машинах (80 – 1000 об/мин), например гидрогенераторах; они имеют значительноечисло полюсов. Конструктивно роторы этого типа (рис. 4.2) состоят из вала 6, ступицы 7, полюсов 8, укрепляемых в шлицах ступицы, полюсных катушек 4 возбуждения, размещенных на полюсах. Поверхность полюсного наконечника полюсов имеет такой профиль, что магнитная индукция в воздушном зазоре машины распределяется примерно по синусоидальному закону. Для быстроходных машин (турбогенераторы, синхронные двигатели, турбокомпрессоры и т. п.) явнополюсная конструкция ротора неприменима из-за сравнительно большого диаметра ротора и возникающих в связи с этим недопустимо больших центробежных сил.

Большей механической прочностью обладает ротор с неявно выраженными полюсами. Он состоит (рис. 4.3) из сердечника 1 и обмотки возбуждения 2. Сердечник изготовляется из стальной поковки цилиндрической формы. На его внешней поверхности фрезеруются пазы, в которые закладывается обмотка возбуждения.

Обмотка возбуждения распределяется в пазах сердечника так, чтобы создаваемое ею магнитное поле было распределено в пространстве по закону, близкому к синусоидальному.

Принцип работы и ЭДС синхронного генератора. Работа синхронного генератора основана на явлении электромагнитной индукции. При холостом ходе обмотка якоря (статора) разомкнута, и магнитное поле машины образуется только обмоткой возбуждения ротора (рис. 4.4). При вращении ротора синхронного генератора от проводного двигателя ПД с постоянной частотой nо магнитное поле ротора, пересекая проводники фазных обмоток статора AX, BY, CZ (рис.4.4,а) наводит в них ЭДС  , где B – магнитная индукция в воздушном зазоре между статором и ротором;  l – активная длина проводника;  – линейная скорость пересечения проводников магнитным полем.

Выше отмечалось,  что индукция В в воздушном зазоре распределена по синусоидальному закону , где - угол, отсчитываемый от нейтральной линии, поэтому ЭДС в одном проводнике .

Обозначив , получим , т.е. ЭДС в проводниках обмоток статора изменяется по синусоидальному закону.

ЭДС отдельных проводников каждой обмотки статора сдвинуты по фазе относительно друг друга, поэтому они суммируются геометрически  (аналогично ЭДС статора асинхронного двигателя – см. п. 3.8.1). Действующее значение ЭДС одной фазы определяется выражением:

где  – обмоточный коэффициент; – частота синусоидальных ЭДС; - число витков одной фазы обмотки статора; - число пар полюсов; – максимальный магнитный поток полюса ротора; – синхронная частота вращения.

Катушки отдельных фаз статора сдвинуты в пространстве на электрический угол, равный 1200, и их ЭДС образуют симметричную трёхфазную систему.

Изменяя ток возбуждения , можно регулировать магнитный поток ротора и пропорциональную ему ЭДС генератора. На рис. 4.5 представлена зависимость , снятая при номинальной частоте вращения .

Эта зависимость называется характеристикой холостого хода. Форма характеристики напоминает форму кривой намагничивания ферромагнитного сердечника. Характерной особенностью её является отсутствие пропорциональности между магнитным потоком и током возбуждения , что обусловлено явлением насыщения магнитной системы машины.

Принцип действия и вращающий момент синхронного двигателя. Принцип действия синхронного двигателя основан на явлении притяжения разноименных полюсов двух магнитных полей – статора и ротора.  Вращающееся поле статора с полюсами N и S создается при питании обмоток статора от трёхфазной сети аналогично вращающемуся полю асинхронного двигателя (на рис. 4.6 полюсы статора N и S показаны штриховкой, вращаются они против часовой стрелки с частотой ). Поле ротора создается постоянным током, протекающим по обмотке ротора.

Предположим, что ротор каким-либо способом разогнан до синхронной частоты вращения против часовой стрелки. Тогда полюсы ротора и будут вращаться с частотой ; произойдет «сцепление» этих полюсов с разноименными полюсами статора и (см. штрихованные линии на рис. 4.6).

В режиме идеального холостого хода (момент сопротивления ) оси магнитных полей статора и ротора совпадают (рис. 4.6.а). При этом на полюсы ротора действуют радиальные силы и , которые не создают ни вращающего момента, ни момента сопротивления.

Если к валу машины приложить механическую нагрузку, которая создает момент сопротивления , ось ротора и его полюсов , сместится в сторону отставания на угол (рис. 4.6,б). Теперь вращающее поле статора как бы “ведёт” за собой поле ротора и сам ротор. Тангенциальные составляющие и создают вращающий момент , где - радиус ротора.

Машина работает в двигательном режиме, её вращающий момент преодолевает момент сопротивления механической нагрузки.

При увеличении момента механической нагрузки на валу ротора угол увеличивается (до некоторого предела), что приводит к увеличению вращающегося момента двигателя , причем частота вращения ротора остается неизменной и равной .

51. Синхронные генератор и двигатель.

 Синхронные генераторы и их характеристики На рис. 1 показаны внешние естественные характеристики трехфазного синхронного генератора, иллюстрирующие зависимость напряжения U г на его зажимах от тока обмотки статора Ir при заданном коэффициенте мощности приемников соs φ = const, неизменном токе возбуждения в обмотке ротора IB = const и постоянной частоте вращения ротора, чему отвечает неизменная частота переменного тока f=const. Эти характеристики могут исходить как из общей точки (0, Егx), отвечающей режиму холостого хода, так и пересекаться в точке (Iг ном, U г ном), соответствующей номинальной нагрузке. Первые характеристики    Рис. 1.1. Внешние характеристики трехфазного синхронного генератора при изменении нагрузки с заданным коэффициентом мощности нагрузки: а - от режима холостого хода до номинальной; б - от номинальной до режима холостого хода позволяют определить изменение напряжения генератора при увеличении нагрузки от режима холостого хода до номинального тока, а вторые - при снижении нагрузки от номинальной до режима холостого хода.  Основной естественной внешней характеристикой синхронного генератора считают кривую Uг (Iг), полученную при симметричном режиме, коэффициенте мощности приемников cos φ = 0,8 и φ > 0.  Для поддержания напряжения синхронного генератора неизменным при переменной нагрузке приходится регулировать ток возбуждения IB в обмотке ротора по закону, определяемому регулировочными характеристиками, крутизна которых зависит от характера нагрузки и ее коэффициента мощности (рис. 6.6). Так, при увеличивающемся токе нагрузки, отстающем по фазе от напряжения на угол φ > 0, возникает размагничивающее действие реакции якоря и соответствующая регулировочная характеристика поднимается, а при возрастающем токе нагрузки, опережающем по фазе напряжение на угол φ < 0, она снижается вследствие подмагничивающего действия реакции якоря.  Регулировочные характеристики дают возможность установить пределы изменения синхронного генератора и выбрать аппараты для регулирования напряжения. Регулировать ток возбуждения при изменении нагрузки генератора можно, изменяя сопротивление обмотки возбуждения.  Регулировать ток возбуждения при изменении нагрузки генератора, который на тепловозе работает в качестве возбудителя основного тягового генератора, можно не только воздействуя на регулирующий реостат Rp, но и автоматически, что особенно удобно при синхронных генераторах с самовозбуждением (рис. 1.3). Здесь при холостом ходе генератора вторичные обмотки вольтодобавочного трансформатора Трв играют роль дросселей, снижающих напряжение на зажимах согласующего трансформатора Трс, через который питаются полупроводниковые диоды В. При увеличении нагрузки генератора в этих обмотках наводится ЭДС, в результате чего напряжение на диодах возрастает и увеличивается ток возбуждения генератора, что приводит к относительной стабилизации напряжения на его зажимах.  Электромагнитная мощность трехфазного синхронного генератора Pэм - мощность, передаваемая электромагнитным путем обмотке статора вращаемым ротором и отличающаяся от мощности P2внешней цепи только на мощность 3R2I 2 отвечающую потерям электрической энергии в обмотке статора, определяется выражением  гдеR2 - активное сопротивление фазы обмотки статора.  Рис. 1.2. Регулировочные характеристики трехфазного синхронного генератора при различном коэффициенте мощности приемников Поскольку потери электрической энергии в обмотке статора незначительны, можно считать, что мощности Pэм и P2 практически одинаковы. Поэтому электромагнитную мощность находят:  Поскольку электромагнитная мощность Pэм зависит от ЭДС холостого хода Ех, определяемой током возбуждения Iв, то некоторым перевозбуждением машины можно увеличить максимальную электромагнитную мощность, при этом повышается статическая устойчивость работы машины, но также усиливается нагрев обмотки ротора.  Рис. 1.3. Схема трехфазного синхронного генератора с самовозбуждением Работа трехфазных синхронных машин в генераторном режиме сопровождается потерями энергии, которые аналогичны потерям в асинхронных машинах. Эффективность работы трехфазного синхронного генератора характеризует КПД, который при симметричной нагрузке находят по формуле    где Uл и Iл - действующие линейные напряжения и ток;  ΔP - суммарные потери, отвечающие данной нагрузке машины.  Максимальное значение КПД синхронного генератора отвечает нагрузке, близкой к номинальной, и составляет для машин средней мощности 0,88-0,92, а для генераторов большой мощности доходит до 0,96-0,99 (рис. 1.4).  Электромагнитный момент синхронного генератора определяется выражением    Особенности применения синхронных генераторов в передачах переменного тока тепловозов. В локомотивных передачах переменного тока используются синхронные генераторы, которые работают совместно с выпрямительной установкой. Для уменьшения пульсации выходного напряжения в статоре тягового синхронного генератора (ГС 501, ГС 504)  Рис. 1.3. Графики зависимости КПД трехфазного синхронного генератора от нагрузки и коэффициента мощности приемников укладывают две трехфазные обмотки, сдвинутые относительно друг друга на 30 эл. градусов. Тепловозные синхронные генераторы представляют собой явнополюсную синхронную электрическую машину. Размеры дизельного помещения локомотива позволяют спроектировать синхронный генератор мощностью до 7500 кВт.  Синхронные генераторы по сравнению с генераторами постоянного тока (1111) имеют меньшую массу. Так, синхронный генератор ГС 504 мощностью 2750 кВт имеет массу 6500 кг, а генератор постоянного тока ГП 31ЗБ мощностью 2700 кВт - 9000 кг. Отсюда следует, что масса синхронного генератора меньше массы генератора постоянного тока на 28-30 %. Выпрямительная установка имеет массу, равную ~10 % массы синхронного генератора. Поэтому общее снижение массы при переходе на синхронный генератор (СГ) и выпрямительную установку (ВУ) составляет 18-20 %.  При газотурбинном двигателе СГ является единственно целесообразным, поскольку между ними наличие механического редуктора необязательно, так как синхронный генератор выполняется на частоту вращения ротора газотурбинного двигателя. Совместная работа ГТП с газотурбинным двигателем без механического редуктора невозможна в виду малой механической прочности его якоря. На тепловозах и газотурбовозах с передачей переменного тока между тяговым синхронным генератором и асинхронными тяговыми двигателями возможно наличие неуправляемой выпрямительной установки (ВУ). При определении внешних характеристик силовой установки тепловоза (СГ с учетом ВУ) учитывают размагничивающее действие продольной реакции якоря синхронного генератора. Вследствие размагничивающего влияния продольной реакции и индуктивного сопротивления обмоток напряжение СГ при независимом возбуждении резко падает при постоянном токе независимой обмотки возбуждения и с увеличением тока нагрузки. Если номинальный ток возбуждения выбрать по Uг max, как в генераторах постоянного тока, то максимальный ток короткого замыкания (к.з.) оказывается намного меньше Iг max требуемого по условиям использования сцепления колес с рельсом. Для увеличения тока к.з. генератора можно повышать значение о.к.з. (отношение короткого замыкания). Синхронный генератор, выполненный с повышенным о.к.з., имеет увеличенные габариты и массу. В режиме к.з. по обмотке статора протекает чисто реактивный ток, который практически не зависит от частоты вращения ротора СГ. Только при очень малой частоте вращения ротора СГ начинает проявляться значение активного сопротивления статора и ток к.з. интенсивно уменьшается. Тепловозные генераторы выполняются со значением о.к.з. = 2 и, кроме того, в режимах пуска должны допускать форсировку возбуждения. Это не приводит к увеличению сечений участков магнитной цепи генератора, так как поток в пусковых режимах мал. Ток возбуждения растет при пуске для компенсации реакции якоря и падения напряжения (рис. 1.4). Рис 1.4 Регулировочная характеристика возбуждения тепловозного тягового генератора Расчетная мощность, определяющая активные размеры СГ,    где kг = Uг max - Uг ном     - коэффициент регулирования генератора.  Расчетная мощность СГ больше, чем генератора постоянного тока, вследствие изменения коэффициента мощности cosφ.  Тяговый генератор переменного тока имеет независимое возбуждение от специального возбудителя. Эксплуатация тепловозов (2ТЭ116, ТЭП70, ТЭМ7,2ТЭ121) показала надежность двух систем возбуждения тяговых синхронных генераторов: возбудителя переменного тока с самовозбуждением (2ТЭ121, ТЭП75, 2ТЭ116А, рис. 6.10, "); от синхронного возбудителя с регулированием напряжения посредством управляемого выпрямителя возбуждения (2ТЭ116, ТЭП70, ТЭМ7, рис. 6.10, б).  Рис. 1.5. Принципиальные схемы независимого возбуждения синхронного тягового генератора: а - от синхронного возбудителя с самовозбуждением (тепловозы2ТЭ121, 2ТЭ116А, ТЭП75Л' б - от синхронного возбудителя через УВВ (тепловозы 2ТЭ116, ТЭП70, ТЭМ7) Совершенствование систем регулирования напряжения тяговых генераторов стало возможным в результате развития полупроводниковой техники, внедрения транзисторных и тиристорных преобразователей и усилителей. Тиристорные усилители обладают такими качествами, как малые габаритные размеры при большой мощности, высокий КПД и коэффициент усиления, большое быстродействие. Это позволило на тепловозах с электрической передачей мощности переменно-постоянного тока применить более современную систему регулирования напряжения тягового генератора, содержащую вместо магнитного усилителя и генератора-возбудителя постоянного тока генератор-возбудитель переменного тока и тиристорный усилитель, питающий обмотку возбуждения тягового генератора. Но так как требуемые характеристики Uг (Iг nдг) должны быть теми же самыми и при новой системе регулирования напряжения генератора, то естественно, что она тоже является комбинированной и построена на основе принципов регулирования по отклонению и возмущениям и содержит четыре регулятора напряжения тягового генератора: по отклонению напряжения от заданного значения, току тягового генератора (или электродвигателей), частоте вращения вала дизель-генератора и положению органа топливоподачи дизеля. 

СИНХРОННЫЙ ДВИГАТЕЛЬ

Синхронная машина, работающая параллельно с сетью, автоматически переходит в двигательный режим, если к валу ротора приложен тормозной момент. При этом машина начинает потреблять из сети активную мощность и возникает электромагнитный вращающий момент. Частота вращения ротора остается неизменной, жестко связанной с частотой сети по соотношению п2 = п1 = 60f1/p, что является важнейшим эксплуатационным свойством синхронных двигателей.

Векторные диаграммы. По основным комплексным уравнениям синхронной машины (6.15 и 6.21) могут быть построены векторные диаграммы. Однако для синхронного двигателя в приведенные уравнения вместо напряжения машины Ú, надо подставить —Úс , так как термин «напряжение двигателя» обычно не употребляется; при этом для неявнополюсной и явнополюсной машин имеем

(6.45)

- Úс = É0 - jÍа Xсн ; -Úc = É0 - jÍd Xd - jÍq Xq .

Рис. 6.45. Упрощенные векторные диаграммы   синхронного    неявнополюсного (а) и явнополюсного (б) двигателя

Построение векторных диаграмм (рис. 6.45, а и б) по формулам (6.45) рекомендуется начинать с изображения векторов Úc и - Úc . Затем строится вектор тока Íа , активная составляющая которого совпадает с направле нием вектора Úc , и определяется вектор É0 . При построении диаграммы для явно полюсной машины (рис. 6.45,б) нужно также (по аналогии с построением диаграммы для генератора, см. рис. 6.26, в) сначала определить направление вектора É0 , прибавив к - Úc вспомогательный вектор а Xq .

Чтобы выяснить свойства синхронного двигателя, рассмотрим его работу при изменении нагрузочного момента Мвн и постоянном токе возбуждения; при этом для простоты будем пользоваться векторной диаграммой неявнополюсной машины. Допустим, что двигатель работает при cos φ = 1, чему на векторной диаграмме (рис. 6.46, а) соответствуют ток Iа1 и угол θ1. С повышением нагрузки увеличивается угол между векторамиÉ0 и - Úc до какого-то значения θ2 , так как согласно (6.35) вращающий момент М = Мвнпропорционален sin θ. При этом конец вектора É0 перемещается по окружности с радиусом, равным Е0, и при принятых условиях (Iв = const; E0 = const; Uc = const ) вектор тока Ía2 также поворачивается вокруг точки О, располагаясь перпендикулярно вектору - a2Xсн . Из диаграммы видно, что в рассматриваемом случае ток двигателя Ía2 имеет отстающую реактивную составляющую. Если нагрузка двигателя уменьшается по сравнению с исходной, то угол θ уменьшается до значения θ3. При этом ток двигателя Ía3 имеет опережающую реактивную составляющую.

Рис.   6.46.   Упрощенные   векторные   диаграммы   синхронного двигателя при изменении нагрузочного момента на валу и тока возбуждения

Следовательно, изменение активной мощности синхронного двигателя приводит к изменению его cos φ: при уменьшении нагрузки вектор тока поворачивается в сторону опережения и двигатель может работать с cos φ = 1 или с опережающим током; при увеличении нагрузки вектор тока поворачивается в сторону отставания. Если при неизменной активной мощности изменять ток возбуждения, то будет изменяться только реактивная мощность, т. е. величина cos φ. Векторная диаграмма для этого случая изображена на рис. 6.46, б. Если двигатель работает при cos φ = 1, то этому режиму соответствует ЭДС É01 и некоторый угол θ1. При уменьшении тока возбуждения ЭДС É0 снижается до É02. Поскольку активная мощность остается неизменной, из условия Рэл = Рэм = (mUE0/Xсн )sin θ = const получаем, что Е01 sinθ1 = E02sinθ2, откуда следует, что конец вектора É0 при изменении тока возбуждения перемещается по прямой ВС, параллельной вектору Úc и проходящей через конец вектора É01. Из векторной диаграммы видно, что угол θ2 больше θ1.

Аналогично строят диаграмму при увеличении тока возбуждения. В этом случае ЭДС É0возрастает до величины É03 и угол θ3 становится меньшим θ1. Вектор - a3Xсн поворачивается вокруг точки А и соответственно ему изменяет направление вектор тока Ía3, перпендикулярный вектору - a3Xсн , при этом из условия равенства активных мощностей Ia1 cos φ1 = Ia2cos φ2 = Ia3 cos φ3 конец вектора тока Ía перемещается по прямой DE, перпендикулярной вектору Uc . По диаграмме, приведенной на рис. 6.46,б, можно построить U-образные характеристики для двигателя Ia =f(Iв ), которые будут иметь такую же форму, как и характеристики для генератора (см. рис. 6,36), с тем лишь отличием, что для двигателя угол сдвига фаз φ принято отсчитывать от вектора напряжения

Рис. 6.47. Рабочие характеристики синхронного двигателя

сети Ú. При недовозбуждении ток Ía отстает от напряжения сети Úc , т. е. двигатель потребляет из сети реактивную мощность, а при перевозбуждении ток опережает напряжение сети Úc , т. е. двигатель отдает в сеть реактивную мощность.

Достоинства и недостатки синхронного двигателя в сравнении с асинхронным. Синхронные двигатели имеют следующие достоинства:

а) возможность работы при cos φ = 1; это приводит к улучшению cos φ сети, а также к сокращению размеров двигателя, так как его ток меньше тока асинхронного двигателя той же мощности. При работе с опережающим током синхронные двигатели служат генераторами реактивной мощности, поступающей в асинхронные двигатели, что снижает потребление этой мощности от генераторов электростанций;

б)   меньшую чувствительность к колебаниям напряжения, так как их максимальный момент пропорционален напряжению в первой степени (а не квадрату напряжения);

в) строгое постоянство частоты вращения независимо от механической нагрузки на валу.

Недостатками синхронных двигателей являются:

а)  сложность конструкции;

б)  сравнительная сложность пуска в ход (см. § 6.14);

в)  трудности с регулированием частоты вращения, которое возможно только путем изменения частоты питающего напряжения.

Указанные недостатки синхронных двигателей делают их менее выгодными, чем асинхронные двигатели, при ограниченных мощностях до 100 кВт. Однако при более высоких мощностях, когда особенно важно иметь высокий cos φ и уменьшенные габаритные размеры машины, синхронные двигатели предпочтительнее асинхронных.

52. Микромашины автоматических устройств

Электрические микромашины автоматических устройств гораздо разнообразнее микромашин общепромышленного применения, что объясняется спецификой выполняемых ими функций. Для них характерно не силовое преобразование энергии, а преобразование одной величины в другую. Например, электрического сигнала в механическое перемещение, углового смещения в напряжение и т.д.

Такие показатели работы, как КПД, cosj, полезная мощность, весьма важные для силовых электрических машин общего применения, здесь оказываются несущественными. Главными являются требования высокой точности работы, хорошего быстродействия, надежности и стабильности характеристик.

Микромашины автоматических устройств можно разделить на следующие группы:

1)исполнительные или управляемые микродвигатели;

2)информационные микромашины;

3)электромашинные усилители;

4)электрические микромашины гироскопических систем.

53. Классификация электроизмерительных приборов

Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят также кроме собственно измерительных приборов и другие средства измерений — меры, преобразователи, комплексные установки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]