Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Алициклические соединения.doc
Скачиваний:
410
Добавлен:
11.05.2015
Размер:
1.54 Mб
Скачать

Химические свойства циклоалканов

Важнейшей особенностью, отличающей алициклические соединения от алифатических соединений является наличие цикла.

Циклоалканы сильно отличаются между собой по устойчивости цикла: наименее устойчивы трехчленные и наиболее устойчивы пяти- и шестичленные циклы.

  1. Реакции гидрирования и дегидрирования

При каталитическом гидрировании трех-, четырех- и пятичленные циклы разрываются с образованием алканов. Особенно легко идет эта реакция в случае циклопропана и его гомологов. Пятичленный цикл разрывается только при высоких температурах.

(циклопентан) + H2  ––300ºC,Pd  CH3CH2CH2CH2CH3(пентан)

Соединения с шестичленными циклами при нагревании с катализаторами гидрирования дегидрируются и превращаются в ароматические углеводороды:

  1. Реакции галогенирования

Реакции циклоалканов с галогенами происходят в различных направлениях в зависимости от величины цикла и природы галогена.

  1. Галогенирование циклопропана

Реакция взаимодействия циклопропана с бромом сопровождаются разрывом циклов и присоединением атомов брома:

При взаимодействии циклопропана с хлором происходит реакция замещения:

  1. Галогенирование циклобутана

Большая устойчивость циклобутана по сравнению с циклопропаном проявляется в том, что он присоединяет бром труднее – лишь при повышенных температурах:

+ Br2BrCH2-CH2-CH2-CH2Br

Хлор при взаимодействии с циклобутаном вступает в реакцию замещения:

CH2 – CH2 CH2 – CH-Cl CH2 - CH

| | + Cl2 → | | → | ||

CH2 – CH2 CH2 – CH2 - HCl CH2 - CH

  1. Галогенирование циклопентана и циклогексана

При взаимодействии циклопентана и циклогексана с галогенами реакция не сопровождается разрывом цикла, а приводит к реакциям замещения:

  1. Реакции гидрогалогенирования

Циклопропан и его гомологи реагируют с галогеноводородами с разрывом цикла:

При взаимодействии гомологов цикропропана с галогеноводородами реакция протекает по правилу Марковникова:

Циклобутан присоединяет HBrаналогично циклопропану, но только при нагревании.

Циклопентан, циклогексан и высшие цилкоалканы с галогеноводородами не реагируют.

  1. Взаимодействие с кислотами

  1. Взаимодействие с серной кислотой

Циклопропановый цикл раскрывается при взаимодействии с серной кислотой с образованием н-пропилсульфата:

CH2

\ + H2SO4 → CH3 – CH2 – CH2 – OSO3H

H2C – CH2

н-пропилсульфат

  1. Взаимодействие с трифторуксусной кислотой

Циклопропановый цикл раскрывается при взаимодействии с сильными карбоновыми кислотами. С гомологами циклопропана реакция протекает в соответствии и правилом Марковникова:

CH2

\ + CF3-COOHCH3CH2CH OCOCF3

R - HCCH2 |

R

Циклобутан взаимодействует с кислотами аналогично, но труднее, чем циклопропан.

Циклопентан, циклогексан и высшие циклоалканы кислотами не расщепляются.

  1. Окисление циклоалканов

Циклоалканы довольно стойки к действию окислителей. Однако, при повышенных температурах, под действием сильных окислителей (KMnO4,K2Cr2O7) происходит разрыв цикла с образованием двухосновных кислот с тем же числом атомов углерода в молекуле:

  1. Перегруппировки циклоалканов

Для циклоалканов и их производных характерны реакции сужения и расширения циклов. Эти реакции являются каталитическими и протекают в присутствии кислот Льюиса:

  1. Перегруппировки, приводящие к сужению цикла

AlCl3

→ --CH3

  1. Перегруппировки, приводящие к расширению цикла

ось симметрии                         II                                     III      I                                                                         

Двенадцать связей C–H, которые имеются у циклогексана в конформации "кресла", делятся на два типа. Шесть связейнаправлены радиально от кольца к периферии молекулы и называются экваториальными связями (e- связи), остальные шесть связей направлены параллельно друг другу и оси симметрии и называются аксиальными (a- связи). Три аксиальные связи направлены в одну сторону от плоскости цикла, а три – в другую (имеется чередование: вверх-вниз)."

Аналогично можно рассчитать отклонения валентных углов и для других циклов:

Циклы

Отклонения валентных углов

Разница между теплотой сгорания на группу СН2 данного цикла и ненапряженного циклогексана (кДж/моль)

вычисленные по Байеру

фактические

Циклопропан (С3)

+24044

+24044

38,50

Циклобутан (С4)

+9044

+9044

27,40

Циклопентан (С5)

+0044

+0044

5,40

Циклогексан (С6)

- 5016

00

0 (как у гексана)

Циклогептан (С7)

- 9033

00

3,78

Циклооктан (С8)

- 12046

00

5,46

Циклононан (С9)

- 15016

00

5,50

Циклодекан (С10)

- 17016

00

4,60

Циклы с С12 и более

0 – 1,70

Согласно полученным расчетам по Байеру, напряжение циклов уменьшается от трехчленного (наиболее напряженного и менее устойчивого) к пятичленному, а затем вновь возрастает. Исходя из этого Байер сделал вывод, что наиболее устойчивым должен быть циклопентан, затем циклогексан, а остальные циклы должны быть значительно менее устойчивыми.

Однако теория Байера оказалась в противоречии со многими экспериментальными данными.

Было установлено, что шестичленный цикл прочнее пятичленного; не наблюдается увеличения напряжения и в циклах с большим числом атомов углерода.

Несостоятельность теории Байера заключалась в том, что он считал все циклы плоскими, а угловое напряжение рассматривал как единственный фактор, определяющий устойчивость циклов.

В настоящее время установлено, что:

  1. все циклы, за исключением трехчленного, не имеют плоскостного строения;

  2. в циклических соединениях существуют следующие типы напряжений, повышающие внутреннюю энергию циклов:

  1. Напряжение угловое (ангулярное) или байеровское напряжение.

Этот тип напряжения обусловлен отклонением валентных углов от нормального валентного угла (109028 ).

  1. Напряжение заслонения или торсионное напряжение.

Этот тип напряжения, связанный с конформационным состоянием молекул, обусловлен отклонением атомов или групп атомов от наиболее выгодной заторможенной конформации.

  1. Напряжение Ван-дер-Ваальса.

Этот тип напряжения возникает в результате взаимного отталкивания атомов или групп атомов, находящихся у соседних атомов углерода, связанных σ-связью.

  1. Напряжение трансаннулярное (напряжение Прелога).

Этот тип напряжения возникает в результате взаимодействия атомов или групп атомов, расположенных не у соседних, а у отдаленных друг от друга атомов углерода цикла. Например, в циклах, содержащих 8-12 атомов углерода.

Естественно, что все указанные типы напряжений приводят к увеличению внутренней энергии системы. Поэтому любое алициклическое соединение стремится принять такую пространственную конфигурацию, при которой число всех этих типов напряжений было бы наименьшим, т.е. чтобы внутренняя энергия системы была минимальной.

Экспериментальная количественная оценка степени напряженности (устойчивости) циклических систем была сделана на основе исследований теплот сгорания, являющихся мерой внутренней энергии соответствующих циклоалканов.

Результаты этих исследований показали, что теплота сгорания в расчете на одну группу СН2 является наименьшей для циклогексана и не отличается от таковой в углеводородах нормального строения. Это свидетельствует об отсутствии напряжения в шестичленном цикле.

Если напряжение в этом цикле принять за нуль, то наибольший избыток энергии в расчете на одну группу СН2 по сравнению с циклогексаном имеют циклопропан (38,5 кДж/моль) и циклобутан (27,4 кДж/моль), что свидетельствует о наличии в этих циклах больших напряжений.

Небольшое напряжение имеется в циклопентане (5,4 кДж/моль), циклогептане (3,7 кДж/моль) и в циклах , содержащих С8 – С11 (4,2-5,8 кДж/моль).

Макроциклы с числом атомов углерода С12 и более приближаются по своей устойчивости к циклогексану (0-1,7 кДж/моль).