Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЯРоо (1).docx
Скачиваний:
7
Добавлен:
24.03.2015
Размер:
729.98 Кб
Скачать

25. The differential cross section

Roughly speaking, the cross section is a measure of the relative probability for the reaction to occur. If we have a detector placed to record particle b emitted in a direction with respect to the beam direction, the detector defines a small solid angle at the target nucleus (Figure 1). Let the current of incident particles beparticles per unit time, and let the target show to the beamN target nuclei per unit area. If the outgoing particles appear at a rate Rb. then the reaction cross section is

. Where

. The quantity is called the differential cross section. and its measurement gives us important information on the angular distribution of the reaction products. Because solid angle is measured in steradians , units of differential cross section are bams/steradian.

34.Coulomb barrier

The Coulomb barrier, named after Coulomb's law, which is named after physicist Charles-Augustin de Coulomb (1736–1806), is the energy barrier due to electrostatic interaction that two nuclei need to overcome so they can get close enough to undergo a nuclear reaction. This energy barrier is given by the electrostatic potential energy: . A positive value of U is due to a repulsive force, so interacting particles are at higher energy levels as they get closer. A negative potential energy indicates a bound state (due to an attractive force). Coulomb's barrier increases with the atomic numbers (i.e. the number of protons) of the colliding nuclei:. To overcome this barrier, nuclei have to collide at high velocities, so their kinetic energies drive them close enough for thestrong interaction to take place and bind them together.

It was the absence of a Coulomb barrier for the neutron.

37.The laws of conservation angular momentum, parity, charge, baryon charge, isospin.

The law of conservation of angular momentum states that when no external torque acts on an object or a closed system of objects, no change of angular momentum can occur. Hence, the angular momentum before an event involving only internal torques or no torques is equal to the angular momentum after the event. The conservation of angular momentum is used extensively in analyzing what is called central force motion. The time derivative of angular momentum is called torque:

The baryon number is conserved in nearly all the interactions of the Standard Model. 'Conserved' means that the sum of the baryon number of all incoming particles is the same as the sum of the baryon numbers of all particles resulting from the reaction.

Isospin is a term introduced to describe groups of particles which have nearly the same mass, such as the proton and neutron.

One of the conservation laws which applies to particle interactions is associated with parity.

Quarks have an intrinsic parity which is defined to be +1 and for an antiquark parity = -1. Nucleons are defined to have intrinsic parity +1. For a meson with quark and antiquark with antiparallel spins (s=0), then the parity is given by

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]