Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
основы электрохимии.doc
Скачиваний:
444
Добавлен:
11.02.2015
Размер:
1.59 Mб
Скачать

11.2.5. Влияние внутренних и внешних факторов на скорость коррозии

Скорость электрохимической коррозии зависит от целого ряда внутренних и внешних факторов, определяющих поляризацию электродов. К внутренним факторам относятся: химический состав, структура металла, состояние поверхности и др. Так, неоднородность поверхности металла является одной из причин местной коррозии.

Внешние факторы определяются природой и свойствами коррозионной среды и ее параметрами (температура, давление, скорость движения среды и т.д.). В некоторых случаях самые незначительные изменения одного из факторов приводит к резкому ускорению или замедлению коррозии.

Состав электролита определяет электропроводность в активную концентрацию ионов, участвующих в процессе. Если ионы электролита способны разрушать пассивную окисную пленку на поверхности металла и тем самым понижать его электродный потенциал, то они ускоряют коррозионный процесс. Типичными депассиваторами металлов являются ионы Cl-, Br-, J-, F-,а также. Для металлов, образующих на поверхности амфотерные оксиды, такую же роль играют ионы.

Сильно влияет на скорость коррозии величина водородного показателя среды. Так, например, для железа, магния, марганца, меди при низких значениях рН скорость растворения велика. При этом легко выделяется водород, а продукты, образующиеся в результате коррозии, растворимы. При рН от 4,0 до 8,5 скорость коррозии не зависит от рН, так как в этих условиях не меняется растворимость катодного деполяризатора кислорода. В щелочных средах (рН>10) для железа скорость коррозии резко падает, так как образуются нерастворимые гидроксиды, а при рН>14 резко возрастает из-за образования растворимых ферритов.

Цинк, алюминий, олово и свинец достаточно устойчивы в нейтральных средах, но разрушаются в кислых и щелочных средах, что объясняется амфотерностью их оксидов.

От состава электролита зависит концентрация растворенного кислорода, которая в свою очередь влияет на скорость коррозии. Для всех солей растворимость кислорода с ростом минерализации уменьшается, а скорость коррозии вначале растет, а затем падает. Такая зависимость является типичной для процессов коррозии металлов в нейтральных растворах солей. Увеличение скорости коррозии при малых концентрациях солей связано с ростом электропроводности растворов и соответствующей активизацией анодного процесса. При повышении концентраций соли (для NaCl более 3%) понижение растворимости кислорода становится превалирующим фактором и скорость коррозии снижается.

Повышение температуры значительно влияет на скорость коррозии, так как увеличивается скорость диффузии, и растворимость продуктов коррозии. Обычно пpи повышении температуры скорость коррозии возрастает, но при этом следует учитывать, что в открытых системах с ростом температуры происходит снижение растворимости кислорода.

Особую опасность в коррозионном отношении представляет сероводород (H2S).

Его уникальная агрессивность объясняется тем, что при растворении в воде он способен генерировать ионы водорода Н+(деполяризатор) и одновременно ионыи, которые оказывают существенное влияние на кинетику электродных процессов.

Так, адсорбция ионов на поверхности металла приводит и уменьшению перенапряжения водорода на катоде, ускоряя катодный процесс, и оказывает каталитическое действие на реакцию ионизации железа, ускоряя тем самым анодный процесс.

Активную роль играют в продукты сероводородной коррозии - сульфиды. Сульфид железа по отношению к железу и стали является катодом и образует с ним микрогальваническую пару, разность потенциалов которой достигает 0,2 - 0,36 В. В месте образования сульфида железа возникают глубокие язвы.

Кроме того, в присутствии сульфидов значительное количество водорода, образующегося в процессе коррозии, не выделяется на поверхности металла в виде молекулярного водорода, а в атомарном виде проникает вглубь металла. Растворенный в металле водород значительно ухудшает различные механические и физические свойства металла. В частности, происходит заметное снижение пластичности, вследствие чего металл подвергается разрушению. Молекулярной водород может собираться в дефектах или пустотах металла, создавать там очень высокие давления и вызывать пузырение металла. В этих условиях высокопрочные стали претерпевают разрушение при величине напряжений, значительно меньших пределах текучести металла. Это явление называется сульфидным растрескиванием. Увеличение прочности стали и величины напряжений повышает опасность сульфидного растрескивания.