Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция_4_Силы в природе.docx
Скачиваний:
3
Добавлен:
17.11.2019
Размер:
46.37 Кб
Скачать

Диаграмма растяжения

И спользуя формулу (2.13), по экспериментальным значениям относительного удлинения  можно вычислить соответствующие им значения нормального напряжения , возникающего в деформированном теле, и построить график зависимости  от . Этот график называют диаграммой растяжения. Подобный график для металлического образца изображен на рис. 22. На участке 0-1 график имеет вид прямой, проходящей через начало координат. Это значит, что до определенного значения напряжения деформация является упругой и выполняется закон Гука, т. е. нормальное напряжение пропорционально относительному удлинению. Максимальное значение нормального напряжения п, при котором еще выполняется закон Гука, называют пределом пропорциональности.

При дальнейшем увеличении нагрузки зависимость напряжения от относительного удлинения становится нелинейной (участок 1-2), хотя упругие свойства тела еще сохраняются. Максимальное значение у нормального напряжения, при котором еще не возникает остаточная деформация, называют пределом упругости. (Предел упругости лишь на сотые доли процента превышает предел пропорциональности.) Увеличение нагрузки выше предела упругости (участок 2-3) приводит к тому, что деформация становится остаточной.

Затем образец начинает удлиняться практически при постоянном напряжении (участок 3-4 графика). Это явление называют текучестью материала. Нормальное напряжение т, при котором остаточная деформация достигает заданного значения, называют пределом текучести.

При напряжениях, превышающих предел текучести, упругие свойства тела в известной мере восстанавливаются, и оно вновь начинает сопротивляться деформации (участок 4-5 графика). Максимальное значение нормального напряжения пр, при превышении которого происходит разрыв образца, называют пределом прочности.

Энергия упруго деформированного тела

Подставив в формулу (2.13) значения  и  из формул (2.11) и (2.12), получим

fуп/S=E|L|/L0.

откуда следует, что сила упругости fуп, возникающая при деформации тела, определяется по формуле

fуп=ES|L|/L0.    (2.14)

Определим работу Aдеф, совершаемую при деформации тела, и потенциальную энергию W упруго деформированного тела. Согласно закону сохранения энергии,

W=Aдеф.    (2.15)

Как видно из формулы (2.14), модуль силы упругости может изменяться. Он возрастает пропорционально деформации тела. Поэтому для подсчета работы деформации необходимо брать среднее значение силы упругости <fуп>, равное половине от ее максимального значения:

<fуп>= ES|L|/2L0.    (2.16)

Тогда определяемая по формуле Aдеф=<fуп>|L| работа деформации

Aдеф= ES|L|2/2L0.

Подставив это выражение в формулу (2.15), найдем значение потенциальной энергии упруго деформированного тела:

W= ES|L|2/2L0.    (2.17)

Для упруго деформированной пружины ES/L0=k - жесткость пружины; х - удлинение пружины. Поэтому формула (2.17) может быть записана в виде

W=kx2/2.    (2.18)

Формула (2.18) определяет потенциальную энергию упруго деформированной пружины.

Силы трения. Коэффициент трения Классификация основных видов трения

При соприкосновении движущихся (или приходящих в движение) тел с другими телами, а также с частицами вещества окружающей среды возникают силы, препятствующие такому движению. Эти силы называют силами трения. Действие сил трения всегда сопровождается превращением механической энергии во внутреннюю и вызывает нагревание тел и окружающей их среды.

Существует внешнее и внутреннее трение (иначе называемое вязкостью). Внешним называют такой вид трения, при котором в местах соприкосновения твердых тел возникают силы, затрудняющие взаимное перемещение тел и направленные по касательной к их поверхностям.

Внутренним трением (вязкостью) называется вид трения, состоящий в том, что при взаимном перемещении. слоев жидкости или газа между ними возникают касательные силы, препятствующие такому перемещению.

Внешнее трение подразделяют на трение покоя (статическое трение) и кинематическое трение. Трение покоя возникает между неподвижными твердыми телами, когда какое-либо из них пытаются сдвинуть с места. Кинематическое трение существует между взаимно соприкасающимися движущимися твердыми телами. Кинематическое трение, в свою очередь, подразделяется на трение скольжения и трение качения.

В жизни человека силы трения играют важную роль. В одних случаях он их использует, а в других борется с ними. Силы трения имеют электромагнитную природу.