Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
заключ.doc
Скачиваний:
1
Добавлен:
09.11.2019
Размер:
57.34 Кб
Скачать

УТВЕРЖДАЮ”

Заведующий кафедрой рэ и эб

к.х.н., доцент

Л.И.Лукина

“___”_________________ 2009 г.

Л Е К Ц И Я

(Заключительная ) Технология очистки промышленных выбросов

учебная дисциплина

Тема: «Рациональный выбор вариантов газоочистки»

Учебная цель: обобщение курса с выделением основных вопросов, обозначение путей дальнейшего углубления изучения дисциплины для использования в практической деятельности.

П Л А Н

Ориентировочно отводимое время:

1.Вводная часть 5мин.

2.Основная часть:

2.1. Выбор вариантов газоочистки 60 мин

3.Заключительная часть. 15 мин

Литература:

1. Охрана окружающей среды. /Под ред. С.В.Белова. - М.: Высш. шк.,1991.

2. Родионов А.И. Техника защиты окружающей среды /А.И Родионов, В.Н. Клушин, Н.С. Торочешников. – М.: Химия, 1989.

3. Родионов А.И. Технологические процессы экологической безопасности (Основы энвайронменталистики) /А.И. Родионов, В.Н. Клушин, В.Г. Систер. - Калуга: Изд-во Н. Бочкаревой, 2000.

4. Тимонин А.С. Инженерно-экологический справочник. В 3-х т. Калуга: Изд-во Н.Бочкаревой, 2003.

5. Панин В.Ф. Экология для инженера /В.Ф. Панин, А.И. Сечин, В.Д. Федосова. Под редакцией В.Ф.Панина. – М.: Издательский дом «Ноосфера», 2001.

2.Выбор вариантов газоочистки

Инженерная защита окружающей среды является одним из направлений экологической безопасности, направленной на повышение качества жизни. Технократический подход не является универсальным решением экологических проблем, но позволяет существенно сократить деградацию окружающей среды на урбанизированных территориях. Дальнейшее развитие инженерной защиты окружающей среды находится в направлении совершенствования основных технологий производства и минимизации их воздействия на окружающую среду, что потребует дальнейшего развития и повышения качества технических природоохранных методов и средств. Это, в свою очередь, ставит задачи углубления теоретических основ техники и технологии защиты окружающей среды.

Дисциплина " Технологии очистки промышленных выбросов"- комплексная научно-техническая дисциплина, изучающая теоретические основы создания ресурсосберегающих технологий очистки выбросов промышленных производств и реализации инженерно-экологических решений по защите воздушного бассейна.

В результате изучения дисциплины " Технологии очистки промышленных выбросов "

получены базовые знания о физико-химических процессах, лежащих в основе очистки отходящих газов, основах технологий очистки пылегазовых выбросов и приобретены практические навыки расчета параметров физико-химических процессов очистки промышленных выбросов в атмосфере .

Современные санитарно-технические средства обработки технологических газовых выбросов не обеспечивают их полного обезвреживания или восстановления первоначального качества воздуха, использованного в производственном цикле. Поэтому отработанные газы всегда вносят в атмосферу часть отходов производства.

Тем не менее, при определении задач проектирования и подборе средств очистки необходимо исходить из идеальной модели, придерживаясь принципа запрета на изменение качества атмосферного воздуха в процессе производства.

На этапе подбора вариантов и поиска средств очистки нет необходимости стремиться к достижению технической простоты или экономической целесообразности решения. Творческий поиск решений становится все более необходимым проектировщикам, так как в последнее время все чаще приходится разрабатывать нетиповые устройства, или же основательно дорабатывать существующие установки по причине их низкой эффективности, морального устаревания или несовпадения параметров технологических процессов ввиду большого разнообразия последних.

Простые методы обработки выбросов современных производственных процессов скорее всего не обеспечат надлежащей степени очистки, предотвращающей ощутимый ущерб окружающей среде. Так, например, простые пылеуловители - осадительные камеры, жалюзийные решетки, циклоны могут быть удачно применены в двухступенчатой схеме очистки для предварительной обработки выбросов. Однако следовало бы отказаться от использования мультициклонов в качестве единственного средства очистки дымовых газов парогенераторов электростанций. Объемы выбросы теплоэнергетических установок достигают 400...500 м3/с, и поэтому проскок загрязнителя в 1...2% может представлять серьезную опасность окружающей среде, в то время как мультициклоны обеспечивают степень очистки не более, чем на 85... 90%.

Наиболее сложны для очистки выбросы, загрязнители которых представляют многофазную систему. Поскольку большинство современных очистных аппаратов не приспособлено для одновременного обезвреживания дисперсных и

гомогенных загрязнителей, то в общем случае подобные выбросы должны пройти последовательно 4 стадии обработки: предварительную и тонкую очистку от аэрозоля и затем предварительное и окончательное обезвреживание газообразного загрязнителя. В частности, если газообразный загрязнитель хорошо растворяется в воде, может быть организована предварительная обработка выбросов мокрыми способами, которая позволит понизить концентрации как дисперсных, так и гомогенных загрязнителей. При обработке выбросов, содержащих твердые аэрозольные загрязнители, низких величин проскока (1...2% и менее) можно достичь, как правило только двухступенчатой очисткой. Для предварительной очистки могут быть применены жалюзийные решетки и циклонные аппараты (иногда для небольших выбросов - пылеосадительные камеры), а для окончательной – пористые фильтры, электрофильтры или мокрые пылеосадители.

При постановке задачи выбора вариантов газоочистки и проектирования должны быть охвачены все загрязнители, которые могут присутствовать в выбросах, для чего необходимо тщательно проанализировать состав выбросов, выделив нейтральную часть и компоненты, которые могут нанести ущерб окружающей среде. Строго говоря, безвредными компонентами выбросов относительно атмосферного воздуха можно считать только азот N2 и кислород О2, однако на практике к ним относятся также углекислый газ (диоксид углерода) СО2 и водяные пары Н2О как нетоксичные соединения.

Все остальные компоненты следует либо обезвредить, т.е. превратить каким-либо способом в указанные выше безвредные соединения, либо удалить. Таким образом, в приближенном к идеальному варианту выброс не должен содержать никаких других компонентов, кроме N2, O2, СО2, Н2О.

Все компоненты, подлежащие удалению, необходимо оценить по физико-химическим и санитарно-гигиеническим свойствам. Следует обратить внимание на агрегатное состояние и термодинамические параметры загрязнителей, их реакционную способность или каталитические свойства в атмосферных химических и фотохимических процессах, степень опасности воздействия на живые организмы.

Для газообразных загрязнителей важны данные о температурах кипения и деструкции, критических параметрах, фазовых переходов, характеристиках растворения и др. (например, для горючих газов - о температурах вспышки и воспламенения, теплоте сгорания, концентрационных пределах воспламенения)..

Для очистки выбросов от газообразных загрязнителей чаще всего применяют методы конденсации, абсорбции, адсорбции и термообезвреживания.

Если температура кипения загрязнителей при атмосферном давлении невысока (ориентировочно ниже 100°С), то глубокая очистка посредством охлаждения и повышения давления потребует чрезмерно высоких расходов энергии, и конденсационную очистку можно использовать только как предварительную.

Абсорбционной обработке могут быть подвергнуты выбросы, загрязнители которых хорошо растворяются в абсорбенте. Если при этом концентрация загрязнителя в выбросах превышает (1...2).10 -3 кг/м3, то технически возможно достичь степени очистки более 90%.В качестве абсорбента чаще всего используются вода или органические жидкости, кипящие при высокой температуре. В аппаратах с органическими абсорбентами можно обрабатывать выбросы, не содержащие твердых примесей, которые практически не поддаются отделению от поглотительной жидкости. Для некоторых газовых загрязнителей можно успешно применить химическую абсорбцию (хемосорбцию) - процесс, в котором подлежащий удалению загрязнитель вступает в химическую реакцию с поглотителем и образует нейтральное или легко удаляемое из процесса соединение. Такие процессы специфичны и разрабатываются конкретно для каждого вида выбросов и набора загрязнителей.

Самым универсальным средством очистки выбросов от газообразных загрязнителей на настоящее время остается адсорбция, а наиболее универсальным адсорбентом - активированный уголь. Посредством адсорбции принципиально возможно извлечь из выбросов любой загрязнитель в широком диапазоне концентраций. Однако высококонцентрированные загрязнители (ориентировочно с концентрациями более 5.10-3 кг/м3) удобнее подвергать предварительной обработке (конденсацией, абсорбцией) для снижения их концентраций. Необходима также предварительная обработка (осушка) сильно увлажненных газов.

Часто в качестве универсального средства очистки выбросов рассматривается термообезвреживание, каковым оно на самом деле не является. В термоокислительных процессах необратимо теряется качество воздуха, использованного для горения, а продукты окисления, выбрасываемые в атмосферу, содержат некоторое количество новых токсичных веществ - оксида углерода СО и оксидов азота NOx . Вообще область применения термообезвреживания ограничена только соединениями, в молекулах которых нет других элементов, кроме углерода С, водорода Н и кислорода О. Получить нетоксичные продукты реакции любых других соединений с кислородом принципиально невозможно. Термоокислительная обработка выбросов, загрязненных углеводородами), ограничивается также по затратам топлива на создание требуемых температур в зоне реакции

(400...550°С для термокаталитической обработки и 800...1200°С для непосредственного термоокисления, т.е. сжигания в пламени).

К перспективным способам обработки больших объемов выбросов с невысокими концентрациями органических газообразных загрязнителей можно отнести схему термообезвреживания с предварительным концентрированием загрязнителей посредством адсорбции. Такая схема может быть технически и экономически приемлемой при начальной концентрации загрязнителя выше 50мг/м3. Теплоту, выделяющуюся при сгорании загрязнителей, можно достаточно легко утилизировать. Если концентрация горючих загрязнителей может быть доведена ориентировочно до (5...6)/10'3 кг/м3, то термообработку можно организовать с незначительным добавлением топлива, а при более высоких концентрациях можно ожидать и экономической эффективности работы установки.

Представляются перспективными способы обработки газов, основанные на переводе парообразных загрязнителей в конденсированное состояние и последующей фильтрации образовавшегося аэрозоля. Если загрязнители имеют невысокое давление насыщенных паров, то может быть приемлемой конденсация посредством повышения давления и понижения температуры выбросов. Пары загрязнителей легкокипящих веществ могут быть подвергнуты обработке химическими реагентами таким образом, чтобы продукты реакции имели низкие давления насыщенных паров. Зачастую при этом способы химической обработки удается подобрать так, чтобы была возможна утилизация улавливаемого продукта.

Требования к эффективности процессов очистки аэрозолей, особенно пылеулавливания, постоянно повышаются по мере ужесточения нормативных требований к чистоте атмосферного воздуха и воздуха в помещениях производственных и гражданских зданий, а также с появлением новых технологий, применением новых материалов и, следовательно, с поступлением в воздух соответствующих выбросов.

Жидкие аэрозоли (туманы) могут быть скоагулированы посредством изменения параметров состояния (охлаждения и повышения давления) с целью осаждения в последующем с использованием как правило мокрых способов u1091 лавуливания в мокрых скрубберах, пористых и электрических фильтрах, в абсорберах.

Мокрые способы очистки твердых и жидких аэрозолей имеют существенный недостаток - необходимость отделения уловленного загрязнителя от улавливающей жидкости. По этой причине мокрые способы следует применять

только при отсутствии других методов очистки, отдавая предпочтение способам с минимальным расходом жидкости.

Существует несколько направлений совершенствования пылеуловителей и систем пылеулавливания с целью повышения эффективности очистки воздуха (газов) от пыли.

. Для обеспечения эффективной очистки отработанного воздуха и газов необходимо в каждом конкретном случае произвести подготовку подлежащих очистке газовоздушных выбросов. Необходима также предварительная обработка (осушка) сильно увлажненных газов.

Представляются перспективными способы обработки газов, основанные на переводе парообразных загрязнителей в конденсированное состояние и последующей фильтрации образовавшегося аэрозоля. Если загрязнители имеют невысокое давление насыщенных паров, то может быть приемлемой конденсация посредством повышения давления и понижения температуры выбросов. Пары загрязнителей легкокипящих веществ могут быть подвергнуты обработке химическими реагентами таким образом, чтобы продукты реакции имели низкие давления насыщенных паров. Зачастую при этом способы химической обработки удается подобрать так, чтобы была возможна утилизация улавливаемого продукта.

При современных требованиях к чистоте воздуха одноступенчатая очистка в большинстве случаев не может обеспечить его необходимого обеспыливания. В основном должна применяться многоступенчатая очистка. Для этого необходим рациональный подбор пылеуловителей с учетом всех факторов: требование к качеству воздуха, свойства, ценность улавливаемой пыли и возможность ее использования, наличие энергетических, водных ресурсов, экономические показатели и др.

Совершенствование способов очистки - непрерывный процесс, являющийся составной частью технического прогресса. Он обусловлен все возрастающими экологическими и санитарно-гигиеническими требованиями и основан на достижениях во многих областях науки и техники

Выводы:

В данной лекции рассмотрены: кратко охарактеризованы факторы ,определяющие выбор вариантов газоочистки, использование которых необходимо в профессиональной деятельности эколога

Лекция обсуждена и одобрена на заседании кафедры РЭ иЭБ

Протокол №_1_ от «_28 _» августа__________ 2009 г.

Ст. преп. каф РЭ и ЭБ О.П.Гавриш

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]