Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Velocity Measurement.pdf
Скачиваний:
20
Добавлен:
02.05.2014
Размер:
330.4 Кб
Скачать

M1

 

C

Extended

M2

light source

 

Thinly silvered

 

mirror at 45°

Eye

(or other detector)

FIGURE 16.3 The basic components of a Michelson interferometer. The clear glass slab C is called a compensating plate. It has the same dimensions and orientation as the 45° mirror in order to make the light paths in glass equal along the two arms, a condition necessary when a white-light source is used.

The signal from the VISAR is generated with a photodiode or other light-sensitive device, and is basically a measure of the rate of fringe variation. Additional data reduction is required to obtain speeds. The sensitivities of the devices are specified in “fringes per meter/second.” Typical sensitivities are in the range of 100 m/s to 4000 m/s per fringe.

The first VISARs were laboratory devices, individually assembled from the needed optical components. Commercial units are now available. Valyn International of Albuquerque, NM, makes VISARs and components. Figure 16.4 shows a schematic of a test setup. This unit can measure speeds from 100 m s–1 to 10 km s–1 or more. The standard measurement range, given as depth of field, of the VISAR is 12 mm, but systems measuring over 10 m have been used. Applications for the VISAR include:

In-bore projectile velocity

Flyer plate velocity

Flying foil velocity

Hugoniot equation of state

Structural response to shock loading

Seismic Devices

The devices discussed in the previous section required a link of some type between the reference and the moving object. Seismic devices do not have this requirement. A seismic device refers to a transducer, which is based on a mass attached to the transducer base, usually with a linear spring. The base is attached to the surface whose motion is desired, and the motion of the seismic mass relative to the base is recorded with a motion transducer. Figure 16.5 shows the principal components of this transducer type. Use of the governing equation of motion for the seismic mass permits the determination of the motion of the base from the relative motion function.

If the motion transducer in the seismic instrument measures the displacement of the mass relative to the base, the output of the transducer is proportional to the acceleration of the transducer base for a specific frequency range and the device is called an accelerometer. Acceleration measurement using this

© 1999 by CRC Press LLC

FIGURE 16.4 Schematic diagram showing how fiber optic components, available from Valyn, can transport laser light to and from a shock experiment, minimizing any laser light beam hazards. (Courtesy: Valyn International, Albuquerque, NM.)

type of device (or with other types of accelerometers) permits the determination of the velocity–time function by integration through the application of Equation 16.3. In this equation, ay(t) would be determined from the output of the accelerometer.

The simplicity of this concept is evident and, because integration is a smoothing process, the numerically introduced noise encountered with a “differentiation of displacement” method of speed measurement does not occur. However, other errors can be introduced. First, any error in the acceleration

© 1999 by CRC Press LLC

Instrument housing

Dashpot providing viscous damping coefficient, ξ

Seismic

mass, M

Mass motion, Sm

Secondary transducer

Transduced

Output

Springs supporting seismic mass. Deflection constant = k

Motion of support

Ss = SsOcos Ωt

Member whose motion is being measured

FIGURE 16.5 Seismic type of motion-measuring instrument.

measurement will be carried over. However, additional precautions are necessary to obtain good results for speed measurement. The problem areas include the following:

The initial speed, Vi , must be known at the beginning of the time of interest. Because this quantity is added to the change in speed, an error in it will be a constant on each value.

A bias, or zero shift, in the accelerometer signal will be included as a constant acceleration, and thus introduce a linearly increasing error in the calculated values throughout the time interval of interest. This bias may be introduced from electrical or thermal characteristics of the circuit, or, in the case of measurement of accelerations during impact after a free fall, by the 1 g acceleration of gravity.

If the frequency content of the acceleration falls outside the usable bandwidth of the accelerometer and recording circuit, errors in acceleration occur. The low-frequency cutoff depends on the recording equipment and circuit, and the high frequency cutoff depends on the natural frequency and damping of the accelerometer, as well as the bandwidth of each piece of equipment in the recording circuit.

Accelerometer theory is based on harmonic excitation of the system. For many velocity measurement applications, the input is a transient. Combination of these two factors can result in inaccurate accelerometer data; for example, ringing may occur, and cause errors in the calculated speeds. This problem is accentuated for lightly damped accelerometers.

When this method of speed measurement must be used, a series of check tests should be conducted to evaluate the accuracy of the method for that particular system.

A variation of the above method is to put an integrating circuit in the accelerometer and perform the integration with an analog circuit. Then, the output of the “velocity” transducer is proportional to the change in speed. This type of device is subject to all of the potential error sources discussed above. A manufacturer of this type of transducer is Wilcoxon Research of Gaithersburg, MD.

© 1999 by CRC Press LLC

 

ωi

 

 

 

Time

εo

ε

o

ωi

 

 

 

 

 

Time

FIGURE 16.6 Permanent-magnet dc tach-generator.

It can be shown that if the electromechanical transducer in a seismic instrument gives an output which is proportional to the speed on one end relative to the other end, then the output of the seismic transducer is proportional to the speed of the transducer in an inertial reference frame, i.e., relative to the earth, for input motion frequencies well above the natural period of the seismic mass. Thus, use of a linear velocity transducer as the motion measurement transducer in a seismic instrument makes it a “seismic velocity transducer.” This type of device is called several different names, including seismometer, geophone, and vibrometer, as well as velocity transducer.

The natural frequency and damping in these instruments are selected to match the application. As with an accelerometer, the usable bandwidth depends on these two characteristics. The low-frequency limit for this type of transducer is dependent on the accuracy required in the measurement. The governing equation is given in Doebelin [3]. As an example, it can be used to show that if an accuracy of 5% is required, the lowest data frequency must be 4.6 times the natural frequency of the transducer, and that the upper data frequency is not limited. In fact, the higher the upper frequency, the more accurate the results.

Seismometers are used for recording and studying motion from earthquakes, and these devices can be quite large. Natural periods can be in the range of 10 s to 50 s, and damping is normally selected as 0.7 of critical to extend the frequency range as much as possible. Geophones are commonly used for oil well logging and related work. Their natural periods are in the vicinity of 10 s. Manufacturers of these devices include Teledyne Brown Engineering and GeoSpace Corporation of Houston, TX.

16.3 Velocity: Angular

Measurement of angular velocity is often applied to rotating machinery such as pumps, engines, and generators. The most familiar unit of measurement in rotating machinery applications is revolutions per minute (rpm). In most cases, the measurement of rpm involves the generation of a pulse train or sine wave whose frequency is proportional to angular velocity. The measuring technologies using pulse trains and waves include ac and dc generator tachometers, optical sensors, variable reluctance sensors, rotating magnet sensors, Wiegand effect sensors, stroboscopy, etc.

These types of measurements are taken with respect to the base of the item being measured. They are relative measurements because one is measuring the motion between two bodies.

Another class of measurement problem is that of moving or inertial bodies. In this case, a measurement of absolute motion is performed. Some fixed reference must be stated or implied. This reference is often the Earth. A universal reference is sometimes required for celestial measurements. These inertial measurements are typically taken with gyroscope-type devices.

Relative: Tachometer

Electrical (dc and ac) Tachometer Generator

A rotating generator produces a voltage signal proportional to the rotational velocity of the input shaft. A dc generator produces a voltage level proportional to speed, as in Figure 16.6. The ac generator produces

© 1999 by CRC Press LLC

eex (a-c)

Time

ωi

eo

 

 

Time

eo (a-c)

180°phase shift

FIGURE 16.7 Ac tach-generator.

b

a

φ

N S

R

FIGURE 16.8 Generated electromotive force. Moving conductor.

an ac voltage output with a frequency proportional to rotational speed, as shown in Figure 16.7. In a simple two-phase motor, the ac voltage is applied to one phase of the motor and the measurement is taken off the other. Typical operating frequencies are 60 Hz and 400 Hz. This carrier frequency should be 5 to 10 times the required frequency response of the ac generator tachometer. The direction of travel is determined by the phase of the signal with opposite directions being 180° out of phase. The basic dc generator is shown in Figure 16.8.

Sources of tachometer generators include the GE Company of Fairfield, CT; Kollmorgen Motion Technologies Group of Radford, VA; Sierracin/Magnedyne of Vista, CA; and Micro Mo Electronics of Clearwater, FL.

Counter Types

An entire class of angular velocity measuring techniques exists that uses pulses generated by electromechanical interaction. The common thread is a pulse-to-voltage converter giving a voltage output proportional to velocity.

Rotating Magnet Sensors: Passive speed sensors convert mechanical motion to ac voltage without an external power source. These self-contained magnetic sensors produce a magnetic field that, when in the proximity of ferrous objects in motion, generates a voltage.

When a magnetic sensor is mounted in the proximity of a ferrous target, such as gear teeth on a rotating shaft, the voltage output frequency is directly proportional to the rotational speed of the target. A frequency-to-voltage converter can then convert the signal to a voltage. An engineering unit conversion from voltage to velocity then provides an actual velocity measurement.

Typical applications for these types of sensors include:

© 1999 by CRC Press LLC