Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
A4_33_33_33_33_33_33_33_33_33_33_33.docx
Скачиваний:
57
Добавлен:
26.09.2019
Размер:
316.45 Кб
Скачать

Строение и функционирование репликативной вилки

Репликационная вилка (репликативная вилка) — cтруктура, которая образуется во время репликации ДНК.

В подавляющем большинстве случаев (кроме некоторых вирусов и искусственно созданных молекул, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух комплементарных цепей, имеющих противоположную направленность. Комплементарность цепей означает, что информационное содержание обеих цепей ДНК идентично. Разные концы цепочки ДНК называются 3’-конец и 5’- конец. Фермент ДНК-полимераза, осуществляющий удвоения цепочки нуклеотидов, может добавлять свободные нуклеотиды только к 3’-концу собираемой цепочки. Поэтому, для осуществления репликации обе цепи родительской ДНК должны быть отделены друг от друга (хотя бы на время).

Четко ограниченная область, перемещающаяся вдоль родительской спирали ДНК, характеризующаяся местным расхождением двух ее цепей из-за своей Y-образной формы названа репликационной вилкой.

Молекулярные механизмы репарации днк

Репарация — особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. Осуществляется специальными ферментными системами клетки. Ряд наследственных болезней (напр., пигментная ксеродерма) связан с нарушениями систем репарации. Начало изучению репарации было положено работами А. Келнера (США), который в 1948 обнаружил явление фотореактивации (ФР) — уменьшение повреждения биологических объектов, вызываемого ультрафиолетовыми (УФ) лучами, при последующем воздействии ярким видимым светом (световая репарация).

Р. Сетлоу, К. Руперт (США) и др. вскоре установили, что фотореактивация — фотохимический процесс, протекающий с участием специального фермента и приводящий к расщеплению димеров тимина, образовавшихся в ДНК при поглощении УФ-кванта.

Позднее при изучении генетического контроля чувствительности бактерий к УФ-свету и ионизирующим излучениям была обнаружена темновая репарация — свойство клеток ликвидировать повреждения в ДНК без участия видимого света. Механизм темновой репарации облученных УФ-светом бактериальных клеток был предсказан А. П. Говард-Фландерсом и экспериментально подтвержден в 1964 Ф. Ханавальтом и Д. Петиджоном (США). Было показано, что у бактерий после облучения происходит вырезание поврежденных участков ДНК с измененными нуклеотидами и ресинтез ДНК в образовавшихся пробелах.

Системы репарации существуют не только у микроорганизмов, но также в клетках животных и человека, у которых они изучаются на культурах тканей. Известен наследственный недуг человека — пигментная ксеродерма, при котором нарушена репарация.

Источники повреждения ДНК

  • УФ излучение

  • Радиация

  • Химические вещества

  • Ошибки репликации ДНК

  • Апуринизация — отщепление азотистых оснований от сахарофосфатного остова

  • Дезаминирование — отщепление аминогруппы от азотистого основания

Основные типы повреждения ДНК

  • Повреждение одиночных нуклеотидов

  • Повреждение пары нуклеотидов

  • Разрыв цепи ДНК

  • Образование поперечных сшивок между основаниями одной цепи или разных цепей ДНК

ДНК-лигаза, осуществляющая репарацию ДНК

Устройство системы репарации

Каждая из систем репарации включает следующие компоненты:

  • фермент, «узнающий» химически изменённые участки в цепи ДНК и осуществляющий разрыв цепи вблизи от повреждения;

  • фермент, удаляющий повреждённый участок;

  • фермент (ДНК-полимераза), синтезирующий соответствующий участок цепи ДНК взамен удалённого;

  • фермент (ДНК-лигаза), замыкающий последнюю связь в полимерной цепи и тем самым восстанавливающий её непрерывность.

Типы репарации

У бактерий имеются по крайней мере 3 ферментные системы, ведущие репарацию — прямая, эксцизионная и пострепликативная.

Прямая репарация

Прямая репарация наиболее простой путь устранения повреждений в ДНК, в котором обычно задействованы специфические ферменты, способные быстро (как правило, в одну стадию) устранять соответствующее повреждение, восстанавливая исходную структуру нуклеотидов. Так действует, например, O6-метилгуанин-ДНК-метилтрансфераза, которая снимает метильную группу с азотистого основания на один из собственных остатков цистеина.

Эксцизионная репарация

Эксцизионная репарация (англ. excision — вырезание) включает удаление повреждённых азотистых оснований из ДНК и последующее восстановление нормальной структуры молекулы.

Пострепликативная репарация

Tип репарации, имеющей место в тех случаях, когда процесс эксцизионной репарации недостаточен для полного исправления повреждения: после репликации с образованием ДНК, содержащей поврежденные участки, образуются одноцепочечные бреши, заполняемые в процессе гомологичной рекомбинации при помощи белка RecA.[1]

Пострепликативная репарация была открыта в клетках E.Coli, не способных выщеплять тиминовые димеры. Это единственный тип репарации, не имеющий этапа узнавания повреждения.

  • Полагают, что от 80 % до 90 % всех раковых заболеваний связаны с отсутствием репарации ДНК[2].

  • Повреждение ДНК под воздействием факторов окружающей среды, а также нормальных метаболических процессов, происходящих в клетке, происходит с частотой от нескольких сотен до 1000 случаев в каждой клетке, каждый час[3].