Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
informatika.doc
Скачиваний:
4
Добавлен:
26.09.2019
Размер:
1.06 Mб
Скачать
  1. Кубит. Квантовые вычисления. Квантовый компьютер

Кубит — квантовый разряд или наименьший элемент для хранения информации в квантовом компьютере. Информация в квантовом компьютере кодируется в квантовых битах или кубитах. Эта единица не двоична, а скорее четверична по своей природе. Кубит может существовать не только в состоянии, соответствующем логическим 0 или 1, как классический бит, но также в состояниях, соответствующих смесли или суперпозиции этих классических состояний. Другими словами, кубит может существовать как ноль, как единица, и как одновременно 0 и 1.

Упрощённая схема вычисления на квантовом компьютере выглядит так: берется система кубитов, на которой записывается начальное состояние. Затем состояние системы или её подсистем изменяется посредством унитарных преобразований, выполняющих те или иные логические операции. В конце измеряется значение, и это результат работы компьютера. Роль проводов классического компьютера играют кубиты, а роль логических блоков классического компьютера играют унитарные преобразования. Такая концепция квантового процессора и квантовых логических вентилей была предложена в 1989 году Д. Дейчем.

Квантовый компьютер — это гипотетическое вычислительное устройство, существенно использующее при работе квантовомеханические эффекты, такие как квантовая суперпозиция и квантовый параллелизм. Предполагается, что это позволит преодолеть некоторые ограничения классических компьютеров. Полномасштабный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьезным развитием квантовой теории в области многих частиц и сложных экспериментов.

  1. Системы счисления. Позиционные и непозиционные системы счисления

Система счисления — принятый способ записи чисел и сопоставления этим записям реальных значений. Все системы счисления можно разделить на два класса: позиционные и непозиционные. Для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга знаков. Число таких знаков в позиционной системе счисления называется основанием системы счисления.

Отметим, что кроме рассмотренных выше позиционных систем счисления существуют такие, в которых значение знака не зависит от того места, которое ОН занимает в числе. Такие системы счисления называются непозиционными. Паи более известным примером непозиционной системы является римская. В ЭТОЙ системе используется 7 знаков (I, V, X, L, С, D, М), которые соответствуют следующим величинам:

I (1) V (5) X (10) L (50) С (100) D (500) М (1000)

Например: III (три), LIX (пятьдесят девять), DLV (пятьсот пятьдесят пять).

Недостатком непозиционных систем, из-за которых они представляют лишь, исторический интерес, является отсутствие формальных правил записи чисел и, соответственно, арифметических действий над ними (хотя по традиции римскими числами часто пользуются при нумерации глав в книгах, веков в истории и др.).

При работе с компьютерами приходится параллельно использовать несколько позиционных систем счисления (чаще всего двоичную, десятичную и шестнаднатеричную), поэтому большое практическое значение имеют процедуры перевода чисел из одной системы счисления в другую.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]