Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тервер экзамен.docx
Скачиваний:
0
Добавлен:
25.09.2019
Размер:
362.31 Кб
Скачать
  1. Теория вероятностей как математическая наука.

Теория вероятностей – раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

  1. Условия применимости теории вероятностей.

Методы теории вероятностей и математической статистики применимы только для исследования массовых однородных случайных явлений, для которых предполагается наличие устойчивости частот.

Следует особо подчеркнуть, что методы теории вероятностей и математической статистики применимы для изучения не любых случайных явлений, а только тех из них, которые обладают определенными свойствами. К этим свойствам относятся:

1) возможность (хотя бы мысленно реально представимая) многократного наблюдения явления или повторения опытов в неизменных условиях;

2) наличие большого числа случайных факторов, которые характеризуют условия наблюдения явления или проведения опытов и не позволяют сделать полностью предопределенного (детерминированного) заключения о том, произойдет или не произойдет в результате наблюдений или опытов интересующее исследователя событие;

3) статистическая устойчивость (устойчивость частот), заключающаяся в приближении частоты появления интересующего исследователя события по мере увеличения количества наблюдений или опытов к некоторой постоянной величине, называемой вероятностью этого события.

  1. История возникновения и развития теории вероятностей.

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей. Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Его работа, в которой вводятся основные понятия теории вероятностей (понятие вероятности как величины шанса; математическое ожидание для дискретных случаев, в виде цены шанса), а также используются теоремы сложения и умножения вероятностей (не сформулированные явно), вышла в печатном виде на двадцать лет раньше (1657 год) издания писем Паскаля и Ферма (1679 год).

Важный вклад в теорию вероятностей внёс Якоб Бернулли: он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышев, А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова. Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

  1. Дайте понятия испытания и события.

Испытание (опыт) – осуществление определенного комплекса условий, при которых проводится наблюдение. Испытание может быть воспроизведено сколь угодно раз.

Событие – качественный результат испытания, повторяемого многократно.

  1. Сформулируйте определения несовместного, совместного, достоверного, случайного, невозможного событий?

Наблюдаемые нами события (явления) можно подразделить на следующие три вида: достоверные, невозможные и случайные.

Достоверным называют событие, которое обязательно произойдет, если будет осуществлена определенная совокупность условий S. Например, если в сосуде содержится вода при нормальном атмосферном давлении и температуре 20°, то событие «вода в сосуде находится в жидком состоянии» есть достоверное. В этом примере заданные атмосферное давление и температура воды составляют совокупность условий S.

Невозможным называют событие, которое заведомо не произойдет, если будет осуществлена совокупность условий S. Например, событие «вода в сосуде находится в твердом состоянии» заведомо не произойдет, если будет осуществлена совокупность условий предыдущего примера.

Случайным называют событие, которое при осуществлении совокупности условий S может либо произойти, либо не произойти. Например, если брошена монета, то она может упасть так, что сверху будет либо герб, либо надпись. Поэтому событие «при бросании монеты выпал «герб» - случайное. Каждое случайное событие, в частности выпадение «герба», есть следствие действия очень многих случайных причин (в нашем примере: сила, с которой брошена монета, форма монеты и многие другие). Невозможно учесть влияние на результат всех этих причин, поскольку число их очень велико и законы их действия неизвестны. Поэтому теория вероятностей не ставит перед собой задачу предсказать, произойдет единичное событие или нет, - она просто не в силах это сделать.

События называют несовместными, если появление одного из них исключает появление других событий в одном и том же испытании.

События называют совместными, если появление одного из них не исключает появление других событий в одном и том же испытании.

          1. Какие события называются равновозможными, единственно возможными, противоположными?

События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.

В некотором испытании (явление) события A, B,...X называются единственно возможным, если по крайней мере одно из них обязательно произойдет как исход испытания (явления).

Два события, одно из которых обязательно должно произойти, причем наступление одного исключает возможность наступления другого, называются противоположными.

          1. Какие события образуют полную группу?

Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие. В частности, если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий. Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.

          1. Сформулируйте классическое определение вероятности.

Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них - красные, 3 - синие и 1 - белый. Очевидно, возможность вынуть наудачу из урны цветной (т. е. красный или синий) шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой

          1. Перечислите свойства вероятности события.

Свойство 1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m = n, следовательно,

Р (A) = m / n = n / n = 1.

Свойство 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m = 0, следовательно,

Р (А) = m / n = 0 / n = 0.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0 < m < n, значит, 0 < m / n < 1, следовательно,

0 < Р (А) < 1

Итак, вероятность любого события удовлетворяет двойному неравенству

0 <= Р (A) < 1.

          1. Сформулируйте статистическое определение вероятности.

Как оценить вероятность интересующего нас события, если в процессе испытания элементарные исходы вовсе не обязаны быть равновероятными? Строго говоря, необходимо было бы много раз проделать интересующий нас опыт и узнать частоту реализации различных элементарных исходов. В пределе, при увеличении числа испытаний, отношение числа m реализованных событий А к общему количеству испытаний n и будет определять вероятность Р(А)=m/n.

Статистической вероятностью события A именуется , при котором число испытаний является достаточно большим.

          1. Комбинаторика как раздел математики.

Комбинаторика изучает количества комбинаций, подчиненных определенным условиям, которые можно составить из элементов, безразлично какой природы, заданного конечного множества.

          1. Сформулируйте правило суммы и правило произведения.

Правило суммы. Если некоторый объект А может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А, либо В можно m + n способами.

Правило произведения. Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А, В) в указанном порядке может быть выбрана mn способами.

          1. В чем заключается сущность комбинаций: перестановки, размещения, сочетания с повторениями?

Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок

Pn = n!,

где n! = 1 * 2 * 3 ... n.

Заметим, что удобно рассматривать 0!, полагая, по определению, 0! = 1.

Размещениями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются либо составом элементов, либо их порядком. Число всех возможных размещений

Amn = n (n - 1)(n - 2) ... (n - m + 1).

Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются хотя бы одним элементом. Число сочетаний

С mn = n! / (m! (n - m)!).

          1. Что называется суммой и произведением событий?

Суммой событий А и В называется третье событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

Произведением событий А и В называется третье событие АВ, которое наступает тогда и только тогда, когда оба события: А и В.

      1. Что называется разностью двух событий?

Разностью событий A и B называется событие A\B, состоящее в том, что событие A произойдёт, а событие B нет, т.е. событию A\B соответствует множество, состоящее из элементов множества A, не принадлежащих множеству B.