Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Моделирование_шпорка.docx
Скачиваний:
5
Добавлен:
25.09.2019
Размер:
1.4 Mб
Скачать
  1. Иерархические уровни моделирования вс. Структурные примитивы уровней моделирования.

В соответствии с принципами системного подхода каждому иерархическому уровню моделирования соответствует своя степень детализации и набор структурных примитивов. Структурным примитивом уровня называется наименьший элемент декомпозиции, который на данном уровне рассматривается как неделимый. Графическую иерархию объектов представляют в виде усеченной пирамиды, расширение которой книзу означает увеличение степени детализации и количества примитивов, которые должны рассматриваться при моделировании.

Рассмотрим иерархию уровней моделирования вычислительных систем в соответствии с выделяемыми структурными примитивами и видами используемого моделирования (см. рис. 6).

Для процессорного уровня иерархии вычислительных систем структурными примитивами являются отдельные устройства: память, порты, микропроцессоры, т. е. микросхемы большой степени интеграции (БИС). Для регистрового уровня в качестве структурных примитивов выступают узлы – регистры, счетчики, мультиплексоры, АЛУ, дешифраторы. Для вентильного уровня это логические элементы и триггеры. На транзисторном уровне – электрорадиокомпоненты: транзисторы, диоды, резисторы, конденсаторы и проч. На кремниевом уровне эти же компоненты предстают уже не как черные ящики, а как некоторое множество топологических фрагментов в объеме полупроводникового кристалла (области диффузии, металлизации и т. п.).

  1. Математический аппарат моделирования вс на различных уровнях декомпозиции.

На различных уровнях декомпозиции используется различный математический аппарат моделирования. В компонентном моделировании исследуются процессы, протекающие в трехмерной среде и в непрерывном времени. Для описания этих процессов используются дифференциальные уравнения в частных производных, в которых в качестве независимых переменных фигурируют время t и пространственные координаты x, y и z. Для описания электрических процессов в полупроводниковых компонентах электронных схем такими уравнениями являются уравнения непрерывности, переноса и Пуассона; для описания тепловых процессов – уравнение теплопроводности.

В схемотехническом моделировании рассматриваются более сложные системы – совокупности компонентов, функционирующих в составе электронной схемы. Для моделирования на приемлемом уровне здесь осуществляется переход от непрерывного к дискретному пространству при сохранении непрерывного представления времени. Поэтому математическим аппаратом моделирования и анализа электрических процессов в электронных схемах является аппарат численного решения обыкновенных дифференциальных уравнений, в статических случаях вырождающихся в алгебраические. В этих уравнениях в качестве единственной независимой переменной фигурирует время.

На уровне функционально-логического моделирования в моделях отражаются процессы преобразования информации. Вместо фазовых переменных, описывающих электрические, магнитные или тепловые процессы, используются переменные, отражающие информационное состояние объектов. Для цифровой аппаратуры этими объектами являются логические операторы, состояние которых характеризуется дискретными, чаще всего булевыми, величинами. Поэтому используемый здесь математический аппарат – математическая логика, в том числе булева алгебра и теория конечных автоматов. На этом уровне в модели отображаются действия, которые выполняются моделируемым объектом в соответствии с алгоритмом функционирования. Здесь еще можно отождествить информационные переменные с сигналами: поставить в соответствие сигналу некоторую физическую величину – напряжение или ток на выходе конкретного элемента, однако целью моделирования такое представление уже не является.

На системном уровне моделирования происходит окончательное абстрагирование от физической сущности информационных процессов. Состояние некоторого устройства системы характеризуется только тем, занято устройство обработкой информации на данном отрезке времени или нет. Обрабатываемая информация делится на составные части – задачи (заявки, запросы, транзакты). Задачи в отличие от сигналов не привязаны жестко к какому-либо устройству, а обслуживаются в системе, перемещаясь от устройства к устройству в соответствии с алгоритмом функционирования системы и своими параметрами. При проектировании системы необходимо обеспечить обслуживание заданного потока заявок при рациональном использовании оборудования. Математическим аппаратом анализа на системном уровне является теория массового обслуживания и алгоритмические модели.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]