Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты2 .docx
Скачиваний:
5
Добавлен:
25.09.2019
Размер:
235.79 Кб
Скачать

Билет 16

Дифференциальные уравнения с разделенными переменными  .Дифференциальные уравнения   называют уравнениями с разделенными переменными. Название этого вида дифференциальных уравнений достаточно показательно: выражения, содержащие переменные xи y, разделены знаком равенства, то есть, находятся по разные стороны от него. Будем считать, что функции f(y) и g(x) непрерывны.Общим интегралом уравнения с разделенными переменными является равенство  . Если интегралы из этого равенства выражаются в элементарных функциях, то мы можем получить общее решение дифференциального уравнения как неявно заданную функцию Ф(x, y) = 0, а иногда получается выразить функцию yв явном виде.

Дифференциальные уравнения с разделяющимися переменными.

Среди обыкновенных дифференциальных уравнений первого порядка существуют такие, в которых возможно переменные x и yразнести по разные стороны знака равенства. В уравнениях вида   переменные уже разделены, а в ОДУ   переменные разделяются посредством преобразований. Кроме того, некоторые дифференциальные уравнения сводятся к уравнениям с разделяющимися переменными после введения новых переменных.В этой статье сначала рассмотрим метод решения уравнений с разделенными переменными, далее перейдем к уравнениям с разделяющимися переменными и закончим дифференциальными уравнениями, сводящимися к уравнениям с разделяющимися переменными. Для пояснения теории будем подробно разбирать решения характерных примеров и задач.

Билет 17

Однородное дифференциальное уравнение может быть записано в виде или где   ,   - однородные функции одной и той же степени, т.е. для некоторого натурального числа   и для произвольного   справедливы равенства

Для решения однородного дифференциального уравнения необходимо сделать замену переменных   , которая сводит однородное дифференциальное уравнение кдифференциальному уравнению с разделяющимися переменными.Пример 1 - решить дифференциальное уравнение

Решение примера

Заметим, что данное дифференциальное уравнение является однородным дифференциальным уравнением, т.к. в правой части стоит однородная функция.

Билет 18

Определение линейного уравнения первого порядка

Дифференциальное уравнение вида где a(x) и b(x) − непрерывные функции x, называтся линейным неоднородным дифференциальным уравнением первого порядка. Мы рассмотрим два метода решения указанных уравнений:

Использование интегрирующего множителя

Если линейное дифференциальное уравнение записано в стандартной форме: то интегрирующий множитель определяется формулой:

Умножение левой части уравнения на интегрирующий множитель u(x) преобразует ее в производную произведения y(x)u(x). Общее решение диффференциального уравнения выражается в виде:

где C − произвольная постоянная.

Метод вариации постоянной

Данный метод аналогичен предыдущему подходу. Сначала необходимо найти общее решение однородного уравнения: Общее решение однородного уравнения содержит постоянную интегрирования C. Далее мы заменяем константу C на некоторую (пока еще неизвестную) функцию C(x). Подставляя это решение в неоднородное дифференциальное уравнение, можно определить функцию C(x). Описанный алгоритм называется методом вариации постоянной. Разумеется, оба метода приводят к одинаковому результату.

Билет 19