Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
21-30.docx
Скачиваний:
3
Добавлен:
24.09.2019
Размер:
282.46 Кб
Скачать

23 Строение среднего и промежуточного мозга

Средний мозг состоит из дорсального отдела крыши среднего мозга и вентрального - ножек мозга, которые разграничиваются полостью -водопроводом мозга. Нижней границей среднего мозга на его вентральной поверхности является передний край моста, верхний зрительный тракт и уровень сосцевидных тел. На препарате головного мозга пластинку четверхоломия, или крышу среднего мозга, можно увидеть лишь после удаления полушарий большого мозга.

На основании головного мозга хорошо видна вторая часть среднего мозга в виде двух толстых белых расходящихся пучков, идущих в ткань полушарий большого мозга, - это ножки мозга. Углубление между правой и левой ножками мозга называются межножковой ямкой, из нее выходят корешки глазодвигательных нервов. Впереди о ядра глазодвигательного нерва лежит ядро медиального продольного пучка. Самым крупным ядром среднего мозга является красное ядро - одно из центральных координационных ядер экстрапирамидной системы. Рядом с водопроводом лежит ретикулярная форма среднего мозга.

На поперечном разрезе отчетливо видно черепное вещество, которое делит ножку мозга на два отдела: дорсальный - покрышку среднего мозга и вентральный - основание ножки мозга. В покрышке среднего мозга располагаются ядра среднего мозга и проходят восходящие проводящие пути. Вентральные отделы ножек мозга целиком состоят из белого вещества, здесь проходят нисходящие проводящие пути. Функциональное значение среднего мозга состоит в том. что здесь расположены подкорковые центры слуха и зрения; ядра головных нервов, обеспечивающих иннервацию поперечнополосатых и гладких мышц глазного яблока: ядра, относящиеся к экстрапирамидной системе, обеспечивающей сокращение мышц тела во время автоматических движений.

Через средний мозг следуют нисходящие (двигательные) и восходящие (чувствительные) проводящие пути. Область среднего мозга является также местом расположения вегетативных центров (центральное серое вещество) и ретикулярной формации.

Средний мозг играет важную роль в регуляции мышечного тонуса и в осуществлении установочных и выпрямительных рефлексов, благодаря которым возможны стояние и ходьба. Роль среднего мозга в регуляции мышечного тонуса лучше всего наблюдать на кошке, у которой сделан поперечный разрез между продолговатым и средним мозгом. У такой кошки резко повышается тонус, мышц, особенно разгибателей. Голова запрокидывается назад, резко выпрямляются лапы. Мышцы настолько сильно сокращены, что попытка согнуть конечность заканчивается неудачей - она сейчас же распрямляется. Животное, поставленное на вытянутые, как палки, лапы, может стоять. Такое состояние называется децеребрационной ригидностью.

Если разрез сделать выше среднего мозга, то децеребрационная ригидность не возникает. Примерно через 2 часа такая кошка делает усилие подняться. Сначала она поднимает голову, затем туловище, потом встает на лапы и может начать ходить. Следовательно, нервные аппараты регуляции мышечного тонуса и функции стояния и ходьбы находятся в среднем мозге.

Явления децеребрационной ригидности объясняют тем, что перерезкой отделяются от продолговатого и спинного мозга красные ядра и ретикулярная формация. Красные ядра не имеют непосредственной связи с рецепторами и эффекторами, но они связаны со всеми отделами центральной нервной системы. К ним подходят нервные волокна от мозжечка, базальных ядер, коры полушарий большого мозга. От красных ядер начинается нисходящий руброспинальный тракт, по которому передаются импульсы к двигательным нейронам спинного мозга. Его называют экстрапирамидным трактом. Чувствительные ядра среднего мозга выполняют ряд важнейших рефлекторных функций. Ядра, находящиеся в верхних холмиках, являются первичными зрительными центрами. Они получают импульсы от сетчатки глаза и участвуют в ориентировочном рефлексе, т. е. повороте головы к свету. При этом происходит изменение ширины зрачка и кривизны хрусталика (аккомодация), способствующая ясному видению предмета.

Ядра нижних холмиков являются первичными слуховыми центрами. Они участвуют в ориентировочном рефлексе на звук - поворот головы в сторону звука. Внезапные звуковые и световые раздражения вызывают сложную реакцию настораживания, мобилизующую животное на быструю ответную реакцию.

Промежуточный мозг (diencephalon) на целом препарате головного мозга не доступен для обозрения, так как целиком скрыт под полушариями большого мозга. Только на основании головного мозга можно увидеть центральную часть промежуточного мозга - гипоталамус.

Серое вещество промежуточного мозга составляют ядра, относящиеся к подкорковым центрам всех видов чувствительности. В промежуточном мозге расположены ретикулярная формация, центры экстрапирамидной системы, вегетативные центры (регулируют все виды обмена веществ) нейросекреторные ядра.

Белое вещество промежуточного мозга представлено проводящими путями восходящего и нисходящего направлений, обеспечивающими двустороннюю связь подкорковых образований с корой большого мозга и ядрами ствола и спинного мозга. Помимо этого, к промежуточному мозгу примыкают две железы внутренней секреции - гипофиз, принимающий участие вместе с соответствующими ядрами гипоталамуса в образовании гипоталамо-гипофизариой системы, и эпифиз мозга (шишковидное тело).

Границами промежуточного мозга на основании головного мозга являются сзади - передний край заднего продырявленного вещества и зрительные тракты, спереди - передняя поверхность зрительного перекреста. На дорсальной поверхности задней границей служит борозда, отделяющая верхние холмики среднего мозга от задних краев таламусов. Переднебоковая граница разделяет с дорсальной стороны промежуточный мозг и конечный. Она образована концевой полоской (stria terminalis), соответствующей границе между таламусом и внутренней капсулой.

Промежуточный мозг включает следующие отделы: таламическую область (область зрительных бугров, зрительный мозг), которая расположена в дорсальных участках; гипоталамус, объединяющий вентральные отделы промежуточного мозга; III желудочек.

Таламическая область

К таламической области относят таламус, метаталамус и эпиталамус.

Гипоталамус

Гипоталамус (hypothalamus) образует нижние отделы промежуточного мозга и участвует в образовании дна III желудочка. К гипоталамусу относятся зрительный перекрест, зрительный тракт, серый бугор с воронкой, а также сосцевидные тела.

Гипоталамус

Третий желудочек

Третий (III) желудочек (ventriculus tertius) занимает центральное положение в промежуточном мозге. Полость желудочка имеет вид сагиттально расположенной узкой щели, ограниченной 6 стенками: двумя латеральными, верхней, нижней, передней и задней. Латеральными стенками III желудочка являются обращенные друг к другу медиальные поверхности таламусов, а также расположенные ниже гипоталамической борозды медиальные отделы субталамической области.

Третий (III) желудочек

24 про конечный мозг смотрите в тетради, в инете хрень.

25

26

27 Спинномозговые нервы, nn. spinales, располагаются в правильном порядке (невромеры), соответствуя миотомам (миомерам) туловища и чередуясь с сегментами позвоночного столба; каждому нерву соответствует относящийся к нему участок кожи (дерматом).

У человека имеется 31 пара спинномозговых нервов, а именно: 8 пар шейных, 12 пар грудных, 5 пар поясничных, 5 пар крестцовых и 1 пара копчиковых.

Каждый спинномозговой нерв отходит от спинного мозга двумя корешками: задним (чувствительным) и передним (двигательным); оба корешка соединяются в один ствол, truncus n. spinalis, выходящий из позвоночного канала через межпозвоночное отверстие. Вблизи и несколько кнаружи от места соединения задний корешок образует узел, ganglion spinale, в котором передний двигательный корешок не принимает участия. Благодаря соединению обоих корешков спинномозговые нервы являются смешанными нервами: они содержат чувствительные (афферентные) волокна от клеток спинномозговых узлов, двигательные (эфферентные) волокна от клеток переднего рога, а также вегетативные волокна от клеток боковых рогов, выходящие из спинного мозга в составе переднего корешка. Вегетативные волокна имеются и в заднем корешке.

Вегетативные волокна, попадающие через корешки в анимальные нервы, обеспечивают в соме такие процессы, как трофика, сосудодвигательные реакции и т. п. У круглоротых (миноги) оба корешка продолжаются в отдельные нервы - двигательные и чувствительные. В дальнейшем ходе эволюции, начиная с поперечноротых рыб корешки сближаются и сливаются, так что раздельный ход сохраняется только для корешков, а нервы становятся смешанными.

Каждый спинномозговой нерв при выходе из межпозвоночного отверстия делится соответственно двум частям миотома (дорсальной и вентральной) на две ветви:

  • заднюю, ramus dorsalis, для развивающейся из дорсальной части миотома аутохтонной мускулатуры спины и покрывающей ее кожи;

  • переднюю, ramus ventralis, для вентральной стенки туловища и конечностей, развивающихся из вентральных частей миотомов.

Кроме того, от спинномозгового нерва отходят еще два рода ветвей:

  • для иннервации внутренностей и сосудов - соединительные ветви к симпатическому стволу, rr. communicantes;

  • для иннервации оболочек спинного мозга - r. meningeus, идущая обратно через межпозвоночное отверстие.

Задние ветви спинномозговых нервов. Задние ветви, rami dorsales, всех спинномозговых нервов идут назад между поперечными отростками позвонков, огибая суставные отростки их. Все они (за исключением I шейного, IV и V крестцовых и копчикового) делятся на ramus medialis и ramus lateralis, которые снабжают кожу затылка, задней поверхности шеи и спины, а также глубокие спинные мышцы.

Задняя ветвь I шейного нерва, n. suboccipitalis выходит между затылочной костью и атлантом и затем делится на ветви, снабжающие mm. recti capitis major et minor, m. semispinalis capitis, mm. obliqui capitis. К коже n. suboccipitalis ветвей не дает. Задняя ветвь II шейного нерва, n. occipitalis major, выйдя между задней дугой атланта и II позвонком, прободает затем мышцы и, сделавшись подкожным, иннервирует затылочную область головы. Rami dorsales грудных нервов делятся на медиальную и латеральную ветви, дающие ветви к аутохтонной мускулатуре; кожные ветви у верхних грудных нервов отходят только от rami mediales, а у нижних - от rami laterales.

Кожные ветви трех верхних поясничных нервов идут в верхнюю часть ягодичной области под названием nn. clunium superiores, а кожные ветви крестцовых - под названием nn. clunium medii. Передние ветви спинномозговых нервов. Передние ветви, rami ventrales, спинномозговых нервов иннервируют кожу и мускулатуру вентральной стенки тела и обе пары конечностей. Так как кожа живота в нижней своей части принимает участие в развитии наружных половых органов, то покрывающая их кожа иннервируется также передними ветвями. Последние, кроме первых двух, гораздо крупнее задних.

Передние ветви спинномозговых нервов сохраняют первоначальное мета-мерное строение только в грудном отделе (nn. intercostales). В остальных отделах, связанных с конечностями, при развитии которых сегментарность теряется, волокна, отходящие от передних спинномозговых ветвей, переплетаются. Так образуются нервные сплетения, plexus, в которых происходит обмен волокон различных невромеров. В сплетениях происходит сложное перераспределение волокон: передняя ветвь каждого спинномозгового нерва дает свои волокна в несколько периферических нервов, и, следовательно, каждый из них содержит волокна от нескольких сегментов спинного мозга.

Понятно поэтому, что поражение того или иного нерва, не сопровождается нарушением функции всех мышц, получающих иннервацию из сегментов, давших начало этому нерву. Большинство нервов, отходящих от сплетений, являются смешанными; поэтому клиническая картина поражения складывается из двигательных нарушений, нарушений чувствительности и вегетативных расстройств. Различают три больших сплетения: шейное, плечевое и пояснично-крестцовое. Последнее делится на поясничное, крестцовое и копчиковое.

Черепных нервов, nn. craniales (encephalici), 12 пар: I - nn. olfactorii, II - n. opticus, III - n. oculomotorius, IV - n. trochlearis, V - n. trigeminus, VI - n. abducens, VII - n. facialis, VIII - n. vestibulocochlearis, IX - n. glossopharyngeus, X - n. vagus, XI - n. accessorius, XII - n. hypoglossus.

Черепные нервы имеют особенности, отличающие их от спинномозговых нервов. Эти особенности зависят главным образом от иных условий развития мозга и головы сравнительно со спинным мозгом и туловищем. Прежде всего первые два черепных нерва, связанные с передним мозгом, по своему характеру и происхождению занимают совершенно отдельное положение среди всех нервов. Они являются выростами мозга. Остальные черепные нервы, хотя принципиально и не отличаются от спинномозговых нервов, но тем не менее для них характерно то обстоятельство, что ни один из них не соответствует полному спинномозговому нерву, слагающемуся из переднего и заднего корешков.

Каждый из черепных нервов представляет собой какой-нибудь один из этих двух корешков, которые в области головы никогда не соединяются вместе, что напоминает подобные же отношения, существующие у спинномозговых нервов примитивных позвоночных (миноги). III, IV, VI, XI и XII черепные нервы соответствуют передним корешкам спинномозговых нервов, а V, VII, VIII, IX и X нервы гомологичны задним.

Особенности черепных нервов связаны с прогрессивным развитием головного мозга. Черепные нервы, как и спинномозговые, имеют ядра серого вещества: соматически-чувствительные (соответствующие задним рогам серого вещества спинного мозга), соматически-двигательные (соответствующие передним рогам) и вегетативные (соответствующие боковым рогам). Последние можно разделить на висцерально-чувствительные и висцерально-двигательные, из которых висцерально-двигательные иннервируют не только неисчерченную (гладкую) мускулатуру, но и скелетные мышцы висцерального происхождения.

Учитывая, что исчерченные (скелетные) мышцы приобрели черты соматических мускулов, все ядра черепных нервов, имеющих отношение к таким мышцам независимо от их происхождения, лучше обозначать как соматически-двигательные. В результате в составе черепных нервов имеются те же компоненты, что и в спинномозговых нервах.

Афферентные:

  • Соматически-чувствительные волокна, идущие от органов, воспринимающих физические раздражители (давление, температуру, звук и свет), т. е. от кожи, органов слуха и зрения, - II, V, VIII.

  • Висцерально-чувствительные волокна, идущие от органов, воспринимающих химические раздражители (растворенные или взвешенные в окружающей среде или во внутренних полостях частицы различных веществ), т. е. от нервных окончаний в органах пищеварения и других внутренностях, от специальных органов глотки, ротовой (органы вкуса) и носовой (органы обоняния) полостей, - I, V, VII, IX, X.

Эфферентные:

  • Соматически-двигательные волокна, иннервирующие произвольную мускулатуру, а именно: мышцы, происшедшие из головных миотомов, глазные мышцы (III, IV, VI), и подъязычную мускулатуру (XII), а также вторично сместившиеся в состав переднего отдела пищеварительного тракта мышцы скелетного типа - так называемые мышцы жаберного аппарата, ставшие у млекопитающих и человека жевательными, мимическими и т. п. (V, VII, IX, X, XI). 4. Висцерально-двигательные волокна, иннервирующие висцеральную мускулатуру, т. е. непроизвольную мускулатуру сосудов и внутренностей (органы пищеварения и дыхания), мышцу сердца, а также различного рода железы (секреторные волокна), - VII, IX, X. В составе двигательных нервов к тем же органам проходят симпатические волокна, идущие из соответствующих симпатических узлов.

Из 12 пар черепных нервов соматически-чувствительным является VIII нерв, соматически-двигательными - III, IV, VI, XI, XII. Остальные нервы (V, VII, IX, X) являются смешанными. Обонятельный нерв, который можно назвать висцерально-чувствительным, и зрительный - соматически-чувствительный занимают особое положение, что уже отмечалось. Малое число соматически-двигательных нервов по сравнению с остальными находится в связи с редукцией миотомов головы, дающих начало лишь глазным мышцам.

Развитие смешанных нервов, содержащих висцеральные компоненты, связано с эволюцией передней части кишечной трубки (хватательной и дыхательной), в области которой развивается висцеральный аппарат со сложной чувствующей областью и значительной мускулатурой.

28

Если периферические нервы связаны с кожей и ощущениями, то вегетативная нервная система направлена вглубь нашего организма. Признаемся себе, что за годы своей жизни вы вряд ли задавали вопрос, как и за счёт чего происходит бесперебойное функционирование нашего организма. Вот как раз эта часть нервной системы и отвечает за дыхание, пищеварение, выделение и т.д. То есть делает возможным то, к чему мы с самого рождения привыкли, как к должному. Если представить минимальный набор нервных клеток для функционирования участка вегетативной нервной системы, то он будет состоять всего лишь из цепочки трёх нейронов.

Как же они влияют на происходящие в организме процессы? Если вы загляните в медицинскую энциклопедию, то просто утонете в океане информации, сдобренном огромным количеством терминологии. Попытаемся объяснить простым и не слишком скучным языком. При проскакивании в нейронах нервного импульса они выделяют особые вещества (для ознакомления это норадреналин и ацетилхолин), которые позволяют воздействовать на сосудистый тонус, работу сердца, пищеварительного тракта и т.д. Вегетативная нервная система делает возможным осуществление практически всех жизненно важных процессов в организме, а также частично отвечает за размножение.

Таким образом, вегетативная нервная система - часть нервной системы, иннервирующая все внутренности, а также эндокринную систему и непроизвольные мышцы кожи, сердце и сосуды, т. е. органы растительной жизни, создающие внутреннюю среду организма, называется растительной нервной системой, вегетативной или автономной.

29

Строение зрительного анализатора

З рительную систему условно можно разделить на три функционирующих системы - глазное яблоко или глаз - восприятие и переработка световой информации, отправка в центральный отдел (1), проводящие пути - проведение сигнала в кору (2) и зрительная кора головного мозга - обработка зрительной информации, формирование и сравнение полученных образов (3).

Строение глаза

Ч еловеческий глаз - это сложная динамическая оптико-электрическая система, основной целью которой является восприятие, первоначальная обработка и передача зрительной информации в центральные отделы зрительной коры головного мозга. Поэтому все структуры глаза призваны обеспечить выполнение его функции. С боков и сзади глаз прочно защищен костями глазницы. Стенки глаза образованы тремя оболочками. Наружная - белочная оболочка (склера) - служит прочным чехлом для внутри расположенных структур. Передний отдел склеры виден при осмотре, покрытконъюнктивой и заканчивается прозрачной и немного выпуклой спереди - роговицей. Конъюнктива покрывает также внутреннюю поверхность век. Средняя оболочка - сосудистая. Она обеспечивает полноценное питание практически всех структур глаза. За роговицей сосудистая оболочка, образует радужку, которая имеет индивидуальную для каждого рисунок и окраску. В центре радужки расположено отверстие - зрачок, который служит диафрагмой при прохождении света внутрь глаза. За радужкой располагается фокусирующая линза - хрусталик, который вследствие изменения своей кривизны позволяет рассматривать близко и далеко расположенные предметы. Внутреннее пространство глаза заполнено желеобразной массой - стекловидным телом, создающим плотный каркас глаза. Третья, внутренняя оболочка глаза - сетчатка, самая сложная по устройству и выполняемым функциям оболочка. Она тонкой пленкой выстилает стенки полости глаза и, будучи придавленной стекловидным телом и внутриглазной жидкостью к сосудистой оболочке, имеет жесткое крепление только у места выхода из глаза зрительного нерва и по так называемой зубчатой линии недалеко от ресничного тела. Сетчатка состоит из различных видов клеток, главные из которых палочки, колбочки и нервные (ганглиозные) клетки. Палочки и колбочки под воздействием света образуют электрические импульсы, которые передаются в нервные клетки. Палочки отвечают за черно-белое или сумеречное зрение, а так же помогают контролировать периферическое пространство относительно точки фиксации глаза. Колбочки определяют цветное зрение и в силу того, что их максимальное количество находится в центральном отделе сетчатки (макуле, или желтом пятне), куда приходят лучи, сфокусированные всеми линзами глаза, играют исключительную роль в восприятии объектов, расположенных в точке фиксации взгляда. В отличие от палочек, колбочки очень требовательны к поступающей энергии и кислороду, поэтому сетчатка имеет свои дополнительные сосуды, которые обеспечивают надежное и достаточное питание составляющих ее клеток. Нервные клетки, центральные отростки которых образуют зрительный нерв, связаны с несколькими палочками. Только каждой колбочке соответствует своя нервная клетка, что подчеркивает их значимость. Зрительный нерв содержит волокна нервных клеток и сосуды, питающие глаз. В месте его выхода из глаза зрительные клетки отсутствуют, поэтому из этого участка (слепое пятно) зрительная информация не поступает. Волокна зрительного нерва, частично перекрещиваясь, проходят в затылочную область, в зрительную кору, где происходят сложнейшие процессы анализа полученной информации с формированием зрительного образа (той картинки, которую видит человек). Для наиболее комфортного функционирования глаз снабжен дополнительными образованиями - мышцами (осуществляют его движения), веками (защищают его спереди от вредных физических и химических воздействий), слезной железой (смазывает роговицу снаружи и удаляет с нее механические и инфекционные агенты), пара и ретробульбарной клетчаткой (выполняет функцию амортизатора). Все выше сказанное говорит о сложнейшем и многоуровневом устройстве органа зрения. Разумеется, что какое-либо нарушение этой высокоточной работы приводит к изменению получаемого в итоге зрительного образа.

30…. Преддверно-улитковый орган, organum vestibulocochlear состоит из двух анализаторов:

  1. анализатора гравитации (т. е. чувства земного притяжения) и равновесия и

  2. анализатора слуха.

Каждый из них имеет свои рецептор, кондуктор и корковый конец. Однако совместнее описание их как единого органа имеет свои причины, заключающиеся в характере их развития. Сначала оба анализатора образовались как единый орган в одной кости - височной, где они локализуются у человека, а затем они дифференцировались на два различных анализатора. Оба эти анализатора тесно связаны между собой, образуя как бы единый орган. Существенной частью его у позвоночных и человека является лабиринт, в котором залегают двоякого рода рецепторы: один из них (спиральный орган) служит для восприятия звуковых раздражений, другие (так называемые maculae et cnstae ampullares) представляют воспринимающие приборы статокинетического аппарата, необходимого для восприятия сил земного тяготения, для поддержания равновесия и ориентировки тела в пространстве. На низших ступенях филогенеза эти две функции еще не дифференцированы друг от друга, но статическая функция является первичной.

Прототипом лабиринта в этом смысле может служить статический пузырек (ото- или статоциста), очень распространенный у беспозвоночных животных, живущих в воде, например моллюсков. У позвоночных такая первоначально простая форма пузырька значительно усложняется сообразно с усложнением лабиринта. Генетически пузырек происходит из эктодермы путем впячивания с последующей отшнуровкой, затем начинают обособляться особые трубкообразные придатки статического аппарата - полукружные протоки. У миксин имеется один полукружный проток, соединяющийся с одиночным пузырьком, вследствие чего они могут перемещаться лишь в одном направлении. У круглоротых появляются два полукружных протока, благодаря чему они получают возможность легко перемещать тело в двух направлениях. Наконец, начиная с рыб, у всех остальных позвоночных развивается три полукружных протока соответственно существующим в природе трем измерениям пространства, позволяющие им двигаться во всех направлениях. В результате формируются преддверие лабиринта и полукружные протоки, имеющие свой особый нерв - pars vestibularis преддверно-улиткового нерва. С выходом на сушу, с появлением у наземных животных локомоции при помощи конечностей, а у человека - прямохождения значение равновесия возрастает. Вся эволюция человека обусловлена приспособлением его организма к гравитационному полю Земли. Для восприятия сил земного притяжения развился специальный анализатор (статокинетический) с особым рецептором, воспринимающим эти силы и потому названный рецептором гравитации. Усложняется строение центров головного мозга, ведающих автоматической регуляцией положения тела.

У человека центры управления положением тела достигают наивысшего развития. В то время как орган гравитации в связи со свободным перемещением тела в пространстве уже сформирован у водных животных, акустический аппарат, находящийся у рыб в зачаточном состоянии, развивается лишь с выходом из воды на сушу, когда становится возможным непосредственное восприятие воздушных колебаний. Он постепенно обосабливается от остальной части лабиринта, закручиваясь спиралью в улитку. С переходом из водной среды в воздушную к внутреннему уху присоединяется звукопроводящий аппарат. Так, начиная с амфибий, появляется среднее ухо - барабанная полость с барабанной перепонкой и слуховыми косточками. Наивысшего своего развития акустический аппарат достигает у млекопитающих, имеющих спиральную улитку с весьма сложно устроенным звукочувствительным прибором. У них имеется отдельный нерв - pars cochlearis преддверно-улиткового нерва и ряд слуховых центров в головном мозге - подкорковых (в промежуточном и среднем мозге) и корковых. У них же возникает наружное ухо с углубленным слуховым проходом и ушной раковиной.

Ушная раковина представляет позднейшее приобретение, играющее роль звукоулавливателя, а также служащее для защиты наружного слухового прохода. У наземных млекопитающих ушная раковина снабжена специальной мускулатурой и легко двигается по направлению звука («навострить уши»). У млекопитающих, ведущих водный и подземный образ жизни, она отсутствует; у человека и высших приматов ушная раковина подвергается редукции и становится неподвижной. Вместе с тем возникновение устной речи у человека сопряжено с максимальным развитием слуховых центров, особенно в коре мозга, составляющих часть второй сигнальной системы - этой высшей прибавки к мышлению животных. Таким образом, несмотря на редукцию отдельных частей уха, слуховой анализатор оказывается наиболее развитым у человека.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]