Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИКА ШПОРЫ.docx
Скачиваний:
12
Добавлен:
23.09.2019
Размер:
1.33 Mб
Скачать

40.(1)Формула Планка.

Формула Планка — выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком. Для плотности энергии излучения :

Формула Планка была получена после того, как стало ясно, что формула Рэлея — Джинса удовлетворительно описывает излучение только в области длинных волн. Для вывода формулы Планк в 1900 году сделал предположение о том, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых связана с частотой излучения выражением:

Коэффициент пропорциональности впоследствии назвали постоянной Планка, = 1.054 · 10−27 эрг·с.

Вывод для абсолютно чёрного тела

Излучение абсолютно чёрного тела

Выражение для средней энергии колебания с частотой ω дается выражением:

где — постоянная Планка, — постоянная Больцмана.

Количество стоячих волн в трёхмерном пространстве равно:

Переход к формулам Рэлея—Джинса.

Формула Планка точно согласуется с экспериментальными данными во всём интервале частот от 0 до . При малых частотах (больших длинах волн), когда можно разложить экспоненту по . В результате получим, что , тогда (3) и (4) переходят в формулу Рэлея—Джинса. и .

Переход к закону Стефана — Больцмана.

Энергетическая светимость равна площади, ограниченной графиком функции f(ω,Т)

Для энергетической светимости следует записать интеграл:

Введём переменную , тогда , , получим

Полученный интеграл имеет точное значение: , подставив его получим известный закон Стефана — Больцмана:

40.(2)Формула Планка.

Подстановка численных значений констант даёт значение для Вт/(м ) , что хорошо согласуется с экспериментом.

Переход к закону смещения Вина

Для перехода к закону Вина, необходимо продифференцировать выражение (5) по и приравнять нулю (поиск экстремума): .

Значение , при котором функция достигает максимума, обращает в нуль выражение, стоящее в фигурных скобках. Обозначим , получится уравнение: .

Решение такого уравнения даёт x=4.965. Следовательно , отсюда получается: .

Численная подстановка констант даёт значение для b=0,0028999 К·м, совпадающее с экспериментом, а также удобную приближенную формулу мкм·К. Так, солнечная поверхность имеет максимум интенсивности в зеленой области (0,5 мкм), что соответствует температуре около 6000 К.

41.Пирометрия.

Пирометрия (от греч. pýr — огонь и... метрия), группа методов измерения температуры. Раньше к П. относили все методы измерения температуры, превышающей предельную для ртутных термометров; с 60-х гг. 20 в. к П. всё чаще относят лишь оптические методы, в частности основанные на применении пирометров, и не включают в неё методы, в которых применяются термометры сопротивления, термоэлектрические термометры с термопарами, и ряд др. методов (см. Термометрия). Почти все оптические методы основаны на измерении интенсивности теплового излучения (иногда — поглощения) тел. Интенсивность теплового излучения сильно зависит от температуры Т тел и очень резко убывает с её уменьшением. Поэтому методы П. применяют для измерения относительно высоких температур (например, серийным радиационным пирометром от 200 °С и выше). При Т £ 1000 °С методы П. играют в целом второстепенную роль, но при Т > 1000 °С они становятся главными, а при Т > 3000 °С — практически единственными методами измерения Т. Методами П. в промышленных и лабораторных условиях определяют температуру в печах и др. нагревательных установках, температуру расплавленных металлов и изделий из них (проката и т.п.), температуру пламён, нагретых газов, плазмы. Методы П. не требуют контакта датчика измерительного прибора с телом, температура которого измеряется, и поэтому могут применяться для измерения очень высоких температур. Основное условие применимости методов П.— излучение тела должно быть чисто тепловым, т. е. оно должно подчиняться Кирхгофа закону излучения. Твёрдые тела и жидкости при высоких температурах обычно удовлетворяют этому требованию, в случае же газов и плазмы необходима специальная проверка для каждого нового объекта или новых физических условий. Так, излучение однородного слоя плазмы подчиняется закону Кирхгофа, если распределения молекул, атомов, ионов и электронов плазмы по скоростям соответствуют Максвелла распределению, заселённости возбуждённых уровней энергии соответствуют закону Больцмана (см. Больцмана статистика), а диссоциация и ионизация определяются: действующих масс законом, причём во все эти соотношения входит одно и то же значение Т. Такое состояние плазмы называется термически равновесным. Интенсивность излучения однородной равновесной плазмы и в линейчатом, и в сплошном спектрах однозначно определяется её химическим составом, давлением, атомными константами и равновесной температурой. Если плазма неоднородна, то даже при повсеместном выполнении условий термического равновесия её излучение не подчиняется закону Кирхгофа. В этом случае методы П. применимы лишь к источникам света, обладающим осевой симметрией.

Измерения наиболее просты для твёрдых тел и жидкостей, спектр излучения которых чисто сплошной. В этом случае измерения температуры осуществляют пирометрами, действие которых основано на законах излучения абсолютно чёрного тела. Обычно поверхности исследуемого тела придают форму полости, чтобы коэффициент поглощения был близок к единице (оптические свойства такого тела близки к свойствам абсолютно чёрного тела).

Наиболее универсальны методы П., основанные на измерении интенсивностей спектральных линий. Они обеспечивают максимальную точность, если известны абсолютная вероятность соответствующего перехода и концентрация атомов данного сорта. Если же концентрация атомов не известна с достаточной точностью, применяют метод относительных интенсивностей, в котором температуру вычисляют по отношению интенсивностей двух (или нескольких) спектральных линий. Варианты этих методов разработаны для измерения температуры как оптически тонких слоев плазмы, так и оптически толстых.

В др. группе методов П. температура определяется по форме или ширине спектральных линий, которые зависят от температуры либо непосредственно благодаря Доплера эффекту, либо косвенно — благодаря Штарка эффекту и зависимости плотности плазмы от температуры. В некоторых методах температура определяется по абсолютной или относительной интенсивности сплошного спектра

16,Условия образования максимумов и минимумов в интерференционной картине. Результат сложения волн, приходящих в точку наблюдения М от двух когерентных источников О1 и О2зависит от разности фаз между ними Df (см. рис 1.)

Расстояния, проходимые волнами от источников до точки наблюдения, равны соответственно d1и d2. Величина называется геометрической разностью хода Dd = d2- d1. Эта величина и определяет разность фаз колебаний в точке М. Возможны два предельных случая наложения волн.

Условия максимумов

Условия минимумов

Разность хода Dd = k·l, где k = 0, 1, 2...

Разность хода Dd = (2k+1)·l/2

Разность фаз Df = 2·k·p

Разность фаз Df = (2k+1)·p

Колебания в точке наложения волн имеют одинаковую фазу.

Колебания в точке наложения волн имеют противоположную фазу.

Наблюдается усиление колебаний

Наблюдается ослабление колебаний.