Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Office Word (4) (Автосохране...docx
Скачиваний:
1
Добавлен:
21.09.2019
Размер:
99.53 Кб
Скачать

1 Закон Кулона - это закон взаимодействия двух неподвижных точечных зарядов. Закон Кулона формулируется следующим образом: Сила электрического взаимодействия между двумя точечными зарядами в вакууме пропорциональна этим зарядам и обратно пропорциональна квадрату расстояния между ними.

2 При взаимодействии одноименные заряды отталкиваются, разноименные притягиваются. Силы Кулона направлены по прямой, соединяющей заряды.

напряженность электрического поля - одна из основных фундаментальных величин классической электродинамики. В этой области физики можно назвать сопоставимыми с ней по значению только вектор магнитной индукции (вместе с вектором напряженности электрического поля образующий тензор электромагнитного поля) и электрический заряд.

Электрическим потенциалом в данной точке называется механическая работа, которую электрическое поле совершает при перемещении единичного положительного заряда из данной точки в бесконечность.

Электрический потенциал измеряется в Вольтах. Потенциал равен одному Вольту, если работа по перемещению одного Кулона равна одному Джоулю.

Работа, совершаемая полем при перемещении заряда из одной точки в другую равна произведению величины перемещаемого заряда на разность потенциалов между этими точками.

Указанная работа не зависит от пути, по которому производится перемещение. Силовые поля, обладающие этим свойством, называются потенциальными.

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Аналогичным свойством обладает и гравитационное поле, и в этом нет ничего удивительного, так как гравитационные и кулоновские силы описываются одинаковыми соотношениями.

Следствием независимости работы от формы траектории является следующее утверждение:

Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

3 Электропроводность, электрическая проводимость, проводимость, способность тела пропускать электрический ток под воздействием электрического поля, а также физическая величина, количественно характеризующая эту способность. Тела, проводящие электрический ток, называются проводниками, в отличие от изоляторов (диэлектриков). Проводники всегда содержат свободные (или квазисвободные) носители заряда — электроны, ионы, направленное (упорядоченное) движение которых и есть электрический ток. Электропроводность (физич.) большинства проводников (металлов, полупроводников, плазмы) обусловлена электронами (в плазме небольшой вклад в Электропроводность (физич.) вносят также ионы). Ионная Электропроводность (физич.) свойственна электролитам

В проводниках присутствуют свободные носители заряда - это часть электронов сравнительно слабо связанных с ядром, которые могут перемещаться с орбиты одного ядра на орбиту другого под воздействием внешнего электрического поля. Такие электроны называются свободными. К проводникам относятся такие вещества, как медь, алюминий.

Диэлектриками называются вещества, основным электрическим свойством которых является их способность поляризоваться в электрическом поле. Строение диэлектриков характеризуется наличием незначительного количества свободных электронов и молекул, вытянутых по форме (полярные диполи). Суть явления поляризации заключается в том, что под воздействием внешнего электрического поля связанные заряды диэлектрика смещаются в направлении действующих на них сил и тем больше, чем выше напряженность поля.

В дипольных диэлектриках воздействие электрического поля вызывает соответствующую ориентацию дипольных молекул в направлении поля. При отсутствии поля диполи расположены беспорядочно вследствие теплового движения. В результате поляризации на поверхности диэлектрика образуются заряды разных знаков. Проводимость диэлектриков обусловлена наличием незначительного числа свободных зарядов. Диэлектрические материалы обладают очень большим электрическим сопротивлением, которое находится в пределах 106... 1011 Ом*м.

4. Электрическая емкость проводника или устройства, состоящего из двух проводников, разделенных диэлектриком, характеризует их способность накапливать электрические заряды.

В технике широко применяют конденсаторы — устройства, кото­рые при сравнительно малых размерах способны накапливать зна­чительные электрические заряды. Они используются в энергетиче­ских установках, в устройствах электроники, автоматики и др.

Плоский конденсатор в простейшем виде состоит из двух метал­лических пластин-обкладок, разделенных диэлектриком, например воздухом, слюдой, парафинированной бумагой и др.

В зависимости от вида диэлектрика конденсатор называют бу­мажным, слюдяным, воздушным и т. Д

Электрическая емкость измеряется в фарадах. Емкость конден­сатора равна одной фараде, если увеличение его заряда на один кулон электричества вызывает повышение напряжения между его об­кладками на один вольт.

Фарада — очень крупная единица емкости, которая практиче­ски не применяется. Обычно пользуются более мелкими единица­ми емкости: микрофарадой (мкф) и пикофарадой (пф).

5 Электри́ческая цепь — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжениеНеразветвленные и разветвленные электрические цепи

Электрические цепи подразделяют на неразветвленные и разветвленные. Во всех элементах ее течет один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 2. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка, то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом.

Линейные и нелинейные электрические цепи

Изображение электрической цепи с помощью условных знаков называют электрической схемой. Зависимость тока, протекающего по сопротивлению, от напряжения на этом сопротивлении называют вольт-амперной характеристикой (ВАХ). По оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток. Сопротивления, ВАХ которых являются прямыми линиями ,называют линейными, электрические цепи только с линейными сопротивлениями — линейными электрическими цепями. Сопротивления, ВАХ которых не являются прямыми линиями ,то есть они нелинейны, называют нелинейными, а электрические цепи с нелинейными сопротивлениями — нелинейными электрическими цепями.

Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности. Также как линейные в определенных диапазонах могут рассматриваться цепи, содержащие линейные усилители и некоторыми другими электронными устройствами, содержащими активные элементы, но имеющими в определенных диапазонах достаточно линейные характеристики.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

6. Все элементы электрической цепи условно можно разделить на активные и пассивные. Активным называется элемент, содержащий в своей структуре источник электрической энергии. К пассивным относятся элементы, в которых рассеивается (резисторы) или накапливается (катушка индуктивности и конденсаторы) энергия. К основным характеристикам элементов цепи относятся их вольт-амперные, вебер-амперные и кулон-вольтные характеристики, описываемые дифференциальными или (и) алгебраическими уравнениями. Если элементы описываются линейными дифференциальными или алгебраическими уравнениями, то они называются линейными, в противном случае они относятся к классу нелинейных. Строго говоря, все элементы являются нелинейными. Возможность рассмотрения их как линейных, что существенно упрощает математическое описание и анализ процессов, определяется границами изменения характеризующих их переменных и их частот. Коэффициенты, связывающие переменные, их производные и интегралы в этих уравнениях, называются параметрами элемента.

Резистивный элемент (резистор). Индуктивный элемент (катушка индуктивности). Емкостный элемент (конденсатор)

1) Постоянный электрический ток представляет собой упорядоченный поток электрически заряженных частиц, величина и направление которого практически не изменяется со временем.

2) Переменный электрический ток представляет собой упорядоченный поток электрически заряженных частиц, величина и направление которых изменяется с течением времени. Среди переменных электрических токов главным является ток, значение которого меняется по синусоидальному закону. В данном случае электрический потенциал каждого конца рабочего проводника меняется относительно потенциала противоположного конца электрического проводника поочерёдно с отрицательного на положительный и наоборот, проходя при этом через все имеющиеся промежуточные электрические потенциалы.

7 Сопротивление и проводимость проводников. Сопротивление (электрическое сопротивление) проводника - величина, характеризующая сопротивление проводника (или электрической цепи) электрическому току. Единица сопротивления в СИ - ом (Ом). 1 Ом - сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А. Сопротивление проводников зависит от его размеров и формы, а также от материала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S. ? - коэффициент пропорциональности, характеризующий материал проводника и называемый удельным электрическим сопротивлением. Удельное электрическое сопротивление проводника - физическая величина, определяемая электрическим сопротивлением однородного линейного проводника длиной 1 м и площади поперечного сечения 1 м2. Величина ? служит характеристикой вещества, из которого изготовлен проводник.

Закон Ома для участка цепи Формулировка закона Ома

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:

I = U / R; [A = В / Ом]

Ом установил, что сопротивление прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

Закон Ома для полной цепи - сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника. I=E/(R+r)

8 Последовательное и параллельное соединения в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.

При последовательном соединении проводников сила тока во всех проводниках одинакова.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

9 Самое распространенное применение законов Кирхгофа мы наблюдаем в так называемых последовательных и параллельных цепях. В последовательной цепи (яркий пример такой цепи — елочная гирлянда, состоящая из последовательно соединенных между собой лампочек) электроны от источника питания по серии проводов последовательно проходят через все лампочки, и на сопротивлении каждой из них напряжение падает согласно закону Ома.

Первый закон Кирхгофа (Закон токов Кирхгофа, ЗТК) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю

Второй закон Кирхгофа (Закон напряжений Кирхгофа, ЗНК) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю

10 Составим матрицу главных сечений В : .

Сечение графа называют главным, если оно пересекает только одну ветвь дерева. Тогда число главных сечений равно числу ветвей дерева. Направление сечений должно совпадать с направлением ветвей дерева. Эта матрица содержит число столбцов, равное числу ветвей графа, а число строк, равное числу ветвей дерева. Номера сечений совпадают с номерами ветвей дерева.

Правила заполнения матрицы В такие же, как матрицы А , только принадлежность ветвей и узлов здесь рассматривается относительно сечений и ветвей.

Тогда первый закон Кирхгофа может бать записан в следующем виде: , где-  – ноль-матрица-столбец размерностью, равной числу ветвей дерева графа, I– матрица-столбец токов ветвей графа.

Составим матрицу главных контуров С по графу .

В ней число строк равно числу ветвей связи, а номера столбцов соответствуют номерам ветвей.

Контур называют главным, если он содержит только одну ветвь связи, а все остальные ветви должны быть ветвями дерева. Направления главных контуров совпадают с направлениями ветвей связи. Правила заполнения матрицы С такие же, как и у матриц А и В,

только они относятся к главным контурам и ветвям. Введем матрицу-столбец напряжений ветвей графа: . Если ввести ноль-матрицу-столбец   размерностью, равной количеству ветвей связи, то второй закон Кирхгофа в матричной форме может быть записан в виде: .

11 Самое распространенное применение законов Кирхгофа мы наблюдаем в так называемых последовательных и параллельных цепях. В последовательной цепи (яркий пример такой цепи — елочная гирлянда, состоящая из последовательно соединенных между собой лампочек) электроны от источника питания по серии проводов последовательно проходят через все лампочки, и на сопротивлении каждой из них напряжение падает согласно закону Ома.

Расчет электрических цепей методом наложения (суперпозиции)

Ток в любой ветви сложной электрической цепи равняется алгебраической сумме отдельных токов от каждого источника электроэнергии. Этот принцип вытекает из свойства линейности уравнений электрической цепи относительно токов и ЭДС. Метод наложения состоит: в замене одной схемы с n источниками ЭДС и (или) тока n такими же схемами, с одним источником в каждой; расчет отдельных токов в ветвях цепи с одним источником и их алгебраическом сложении для определения токов заданной цепи с n источников.

12. С современной точки зрения в природе существует совокупность двух полей — электрического и магнитного — это электромагнитное поле, оно представляет собой особый вид материи, т. е. существует объективно, независимо от нашего сознания. Магнитное поле всегда порождается переменным электрическим, и наоборот, переменное магнитное поле всегда порождает переменное электрическое поле. Магнитное поле является силовым полем. Силовой характеристикой магнитного поля называют магнитную индукцию (В). Магнитная индукция — это векторная физическая величина, равная максимальной силе, действующей со стороны магнитного поля на единичный элемент тока. В = F/IL Единичный элемент тока — это проводник длиной 1 м и силой тока в нем 1 А. Единицей измерения магнитной индукции является тесла. 1 Тл = 1 Н/А • м. Магнитная индукция всегда порождается в плоскости под углом 90° к электрическому полю. Вокруг проводника с током магнитное поле также существует в перпендикулярной проводнику плоскости. Магнитное поле является вихревым полем. Для графического изображения магнитных полей вводятся силовые линии, или линии индукции, — это такие линии, в каждой точке которых вектор магнитной индукции направлен по касательной. Направление силовых линий находится по правилу буравчика. Если буравчик ввинчивать по направлению тока, то направление вращения рукоятки совпадет с направлением силовых линий. Линии магнитной индукции прямого провода с током представляют собой концентрические окружности, расположенные в плоскости, перпендикулярной проводнику

Как установил Ампер, на проводник с током, помещенный в магнитное поле, действует сила. Сила, действующая со стороны магнитного поля на проводник с током, прямо пропорциональна силе тока, длине проводника в магнитном поле и перпендикулярной составляющей вектора магнитной индукции. Это и есть формулировка закона Ампера, который записывается так: Fa = ILВ sin a. Направление силы Ампера определяют по правилу левой руки. Если левую руку расположить так, чтобы четыре пальца показывали направление тока, перпендикулярная составляющая вектора магнитной индукции (В = В sin а) входила в ладонь, то отогнутый на 90° большой палец покажет направление силы Ампера

13 В природе существуют заряды двух видов. Их условились называть положительными и отрицательными зарядами. Два тела с одноименными зарядами отталкиваются. Если же знаки зарядов различны, то между телами действуют силы притяжения.

Электрическая сила зависит от величины зарядов и от расстояния между заряженными телами, она тем больше, чем больше заряды и чем меньше расстояние между ними.

У электрических зарядов есть интересное свойство. Когда заряды движутся друг относительно друга, между ними, кроме электрической силы, возникает еще одна сила, которую называют магнитной силой.

Обе эти силы - электрическая и магнитная - настолько тесно связаны, что их нельзя отделить друг от друга: они действуют одновременно. А так как большей частью приходится иметь дело с движущимися зарядами, то действующие между ними силы нельзя назвать ни электрическими, ни магнитными. Их называют электромагнитными силами.

Откуда же берется «электрический заряд», который у тела может быть, а может и не быть?

Любое тело состоит из молекул и атомов. В свою очередь атомы, хотя они и чрезвычайно малы (несколько стомиллионных долей сантиметра), состоят из еще меньших частиц - атомного ядра и электронов. Вот они-то, ядра и электроны, обладают электрическими зарядами. Ядро имеет положительный заряд, электроны - отрицательный.

Правило левой руки Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а вытянутые четыре пальца совпадали с направлением тока в проводнике, то отогнутый большой палец укажет направление силы, действующей на проводник с током, помещенный в магнитное поле.