Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Анализаторы аааа!.doc
Скачиваний:
40
Добавлен:
21.09.2019
Размер:
260.61 Кб
Скачать

6.Формирование зрительного образа. Роль подкорковых структур и полушарий в зрительном восприятии.

На высших уровнях зрительной системы параллельно функционируют две системы анализа: одна определяет место предмета в пространстве, другая описы­вает его признаки. Конечные результаты параллельных процессов интегрируются и возникает законченный зрительный образ внешнего предметного мира.

Способность объединять информацию, идущую от обоих глаз, основана на двух важнейших свойствах зрительной системы.

Во-первых, движения наших глаз, когда мы осматриваем ими окружающий мир, сложным образом скоординированы. Движения глаз управляются центрами, которые находятся в области ретикулярной формации мозга и среднего мозга, в верхних буграх четверохолмия и в претектальной области. Все эти подкорковые центры координируются сигналами из зрительной, теменной и лобной коры, от­ветственными за программирование движений тела и оценки его положения в пространстве. Для наиболее тонкой рецепции глазодвигательных функций весьма существенны влияния мозжечка, сравнивающего тонический и фазный компо­ненты движения при ориентации в пространстве.

Координированные движения глаз обеспечивают объединение информации, идущей от обоих глаз в центры мозга. Особое значение для восприятия и коорди­нации движений играют нейроны верхних бугров четверохолмия. Они организо­ваны в колонки, которые воспринимают сигналы, поступающие от одних и тех же участков полей зрения: активность нейронов этого отдела мозга, на которых конвергирует импульсация от правого и левого глаза, является пусковым меха­низмом для глазодвигательных нейронов.

Во-вторых, проекции видимого мира на сетчатках обоих глаз отображаются в поле 17 в виде двух почти идентичных проекций, которые затем объединяются межкорковыми связями каким-то еще не вполне понятным образом. Однако, из­вестно, что на уровне коленчатого тела и *поля 17 благодаря довольно сложной системе проводящих путей зрительная информация от каждого из двух глаз оста­ется пространственно обособленной.

Зрительная информация от рецепторных клеток сетчатки каждого глаза идет практически параллельными путями до зрительной коры. Наши глаза с удвоен­ными зрительными путями обеспечивают резерв на случай выхода из строя одно­го глаза. Они работают сообща для достижения суммарного эффекта. Разница в положении глаз обуславливает незначительные различия в идущей параллельны­ми путями зрительной информации, а это в свою очередь позволяет видеть пред­меты в трех измерениях.

Деятельность других параллельных путей обогащает наше зрительное вос­приятие. Различные аспекты информации, получаемой от каждого глаза, переда­ются по трем параллельным каналам. Информация о специфике образа (распозна­вание "точек") поступает через латеральное коленчатое тело в первичную зри­тельную зону. Информация, касающаяся движения, по различным аксонам на­правляется от сетчатки к верхним буграм четверохолмия и к полю 17 зрительной коры. Сигналы об уровне рассеянного света идут в супрахиазменные ядра. Вся эта информация, передаваемая по различным, но параллельным путям, в конце концов вновь объединяется в интегрирующих сетях коры и воссоздает полную картину того, что мы видим.

Зрительное восприятие

Целостное восприятие окружающего мира происходит в результате объеди­нения всей информации, поступившей по параллельным путям зрительной системы. Магноцеллюлярный путь обеспечивает регистрацию движения объектов, восприятие пространственной глубины и определение простран­ственных отношений между объектами. В объединении этой информации помимо первичной зрительной коры участвуют регионы V2 (поле 18), V3 (поле 19), V5 или МТ (медиотемпоральный), MST (область коры, проходя­щая вдоль верхней височной борозды) и заднетеменной коры (поля 5 и 7). Парвоцеллюлярный путь, берущий начало от on- и off-ганглиозных клеток сетчатки и служащий для анализа информации о контурах объекта и ли­нейной ориентации его деталей, после переработки в регионе VI продол­жается в направлении нижних височных долей коры, при участии которых происходит восприятие формы наблюдаемых объектов. Параллельный пар­воцеллюлярный путь начинается от концентрических противоцветных ганг-лиозных клеток сетчатки и предназначается для формирования зрительно­го представления о цвете объекта. Необходимая информация последова­тельно перерабатывается в регионах VI, V2 и V4, где происходит объедине­ние зрительного восприятия формы и цвета. В регионе V4 расположены нейроны, воспринимающие определенный цвет, а не длину волн, соответ­ствующих тому или иному цвету. С активностью этих нейронов связан фе­номен цветового постоянства, т. е. способность воспринимать цвет одних и тех же объектов неизменным, несмотря на естественные изменения ос­вещенности на протяжении светового дня.

Восприятие образуется из элементарных зрительных ощущений подобно тому, как музыкальная мелодия складывается из отдельных звуков опреде­ленной высоты и узнается независимо от того, в какой тональности она сыграна. Процесс зрительного восприятия состоит из нескольких этапов. Первый из них осуществляется очень быстро и состоит в определении важ­нейших контуров объектов, их границ и текстуры поверхности, когда вни­мание еще не фиксировано на каких-либо деталях. После этого происходит фокусирование внимания на деталях, которые, в зависимости от их важно­сти для целостного восприятия, могут быть просмотрены несколько раз, то­гда как другие, менее информативные остаются незамеченными. Например, при рассматривании человеческого лица внимание смотрящего помимо об­щего контура более всего сосредоточено на таких деталях, как глаза и губы, тогда как щеки обычно привлекают внимание в меньшей мере. Зрительное восприятие не сводится к элементарному отражению зрительного поля, оно складывается и в результате конструктивной и высокопроизводительной ак­тивности всех участвующих в этом процессе регионов мозга: благодаря это­му человек может с первого взгляда узнавать лица, вещи или пейзажи.

7.Слуховой анализатор. Звукоулавливающий и звукопроводящий аппарат. Рецепторный отдел слухового анализатора. Механизм возникновения рецепторного потенциала в волосковых клетках спирального органа. Теории восприятия звуков (Гемгольца, Бекеши). Проводниковый и корковый отдел слухового анализатора. Бинауральный слух.

Слуховой анализатор предназначен для восприятия периодических сгущений и разря­жений воздушной или другой среды, которые создаются источником колебаний.

До того, как достигнуть рецепторов, реагирующих на эти колебания, волны должны пройти целый ряд специализированных периферических приборов, называемых наружным и средним ухом.

Наружное ухо. Функции наружного уха (ушная раковина, наружный слухо­вой проход и внешняя сторона барабанной перепонки) сводятся к обеспечению направленного приема звуковых волн. Ушные раковины способствуют концен­трации звуков, исходящих из разных участков пространства. Структуры наруж­ного уха несут также защитную функцию. Они охраняют барабанную перепонку от механических и термических воздействий, обеспечивают постоянную темпера­туру и влажность в этой области.

Среднее ухо. Барабанная перепонка, площадь которой составляет 66-69,5 мм , является границей между наружным и средним ухом и имеет форму конуса с вершиной, направленной в полость среднего уха. Ее основная задача — передача звуковых колебаний воздуха в наружном ухе системе косточек среднего уха. Среднее ухо соединяется с задней частью глотки узким каналом — евстахиевой трубой, основная функция которой — уравнивание давления в среднем ухе с дав­лением наружной воздушной среды.

Колебания барабанной перепонки приводят в движение молоточек (ручка которого прикреплена к барабанной перепонке), наковальню, затем — стремечко (рис. 4). Основание стремечка, укрепленное в овальном окне улитки, приводит в движение несжимаемую перилимфу, заполняющую вестибулярный и барабанный ход улитки. Звуковое давление у круглого окна улитки, благодаря передаточной функции слуховых косточек, усиливается в 20 раз. Такое усиление играет боль­шую функциональную роль, т. к. жидкость внутреннего уха обладает значительно большим акустическим сопротивлением, чем воздух.

В среднем ухе имеются две мышцы: мускул, натягивающий барабанную пе­репонку и прикрепленный к ручке молоточка, и стапедиальный мускул, прикреп­ленный к стремечку. Функция этих мышц состоит в предохранении слухового рецепторного аппара­та от звуковых пере­грузок: при длитель­ном пребывании в ус­ловиях действия сильных шумов

мышцы при сокраще­нии уменьшают ам­плитуду колебаний барабанной перепон­ки и косточек.

Внутреннее ухо. Важнейшую функцию рецепции звука несет улитка — ко­стная структура внутреннего уха, закрученная в виде спирали. Внутри улитки по всей ее длине проходят две мембраны — основная и рейснерова, разделяющие улитку на три лестницы: вестибулярную (scala vestibuli), барабанную (scala tym-pani) и среднюю (scala media) лестницы.

Основная мембрана имеет в развернутом виде около 3,5 см в длину, а шири­на ее возрастает по направлению от овального окна к вершине. На основной мем­бране под влиянием колебаний перилимфы от овального возникает бегущая вол­на.

Расположение рецепторных клеток. На основной мембране находится ско­пление чувствительных рецепторных клеток - фонорецепторов, входящих в со­став органа Корти. Они являются механорецепторами, представленными волос-ковыми клетками, каждая из которых имеет до сотни волосков (стереоцилий). Волосковые клетки располагаются в два слоя, разделенные между собой каналом небольшого размера — кортиевым туннелем. Внутренний слой содержит один ряд, а наружный — 3-5 рядов клеток. Волосковые клетки прикрыты сверху по­кровной (текториальвой) мембраной, у которой закреплен только один край, вто­рой свободен. Стереоцилий соприкасаются с нижней поверхностью текториаль-ной мембраны (рис.5). Когда мембрана скользит по волосковым клеткам, особен­но если двигается основная мембрана, она сгибает волоски рецепторных клеток.

В результате деформации волосков и различий электрохимических свойств жид­костей внутреннего уха, заполняющих разные лестницы, генерируются импульсы рецепторных клеток и связанных с ними нервных окончаний.

Проводниковый отдел слухового анализатора. Нейроны 1-го поряд­ка (биполярные нейроны) находятся в спиральном ганглии. Один отросток биполярного нейрона образует синапс на слуховой рецепторной клетке, а другой направляется к головному мозгу в составе пред-дверно-улиткового нерва (VIII пара черепных нервов).

Нейроны 2-го порядка образуют в про­долговатом мозге комплекс кохлеарных ядер.

Следующий уровень слуховой системы представлен ядрами верхней оливы (медиаль­ным и латеральным). На этом уровне уже осуществляется бинауральный (от обоих ушей) анализ звуковых сигналов. Проекции слуховых путей на верхнеоливарные ядра моста организованы также тонотопически. Аксоны клеток верхнеоливарных ядер моста идут в составе латеральной петли. Основная часть его волокон переключа­ется в нижнем двухолмии среднего мозга, другая часть - на нейронах медиального

коленчатого тела в таламусе.

Нижнее двухолмие является важнейшим центром анализа звуковых сигналов. На этом уровне заканчивается анализ звуковых сигналов, необходимых для ориентировочных реакций на звук. Аксоны клеток заднего холма направляют­ся к медиальному коленчатому телу. Однако часть аксонов идет к противоположному холму.

Медиальное коленчатое тело является тала-мическим центром слуховой системы. Аксоны нейронов коленчатого тела образуют слуховую радиацию и направляются в слуховую область коры, где располагается 5-й нейрон. В этом та-ламическом ядре также прослеживается тоното-пия: низкая частота представлена в латеральной, а высокая - в медиальной части ядра.

Первый перекрест волокон наблюдается на уровне продолговатого мозга. Второй перекрест - на клетках нижних холмов. Следующий, тре­тий перекрест волокон осуществляется уже на корковом уровне. Здесь часть волокон в составе мозолистого тела, объединяющего полушария мозга, идет на противоположную сторону, в пер­вичную проекционную зону коры.

Корковый отдел слухового анализатора на­ходится в верхней части височной доли большо­го мозга (верхняя височная извилина, 41-е и 42-е поля по Бродману). В каждой из зон имеет место тонотопия, т. е. полное представительство кор­тиева органа. Важное значение для функции слу­хового анализатора имеют поперечные височные извилины (извилины Гешля).

ВОСПРИЯТИЕ СЛУХОВЫХ ОЩУЩЕНИЙ

Эти процессы начинаются с попадания звуковых волн в наружное ухо; они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овально­го окна, что вызывает колебание перилимфы вестибулярной (верхней) лестницы. Поскольку жидкость несжимаема, перемещение перилимфы может передаваться через геликотрему в барабанную лестницу, а оттуда через круглое окно — обрат­но в полость среднего уха (рис. 4). Перилимфа может перемещаться и более коротким путем: рейснерова мембрана изгибается, и че­рез среднюю лестницу дав­ление передается на ос­новную мембрану, затем в барабанную лестницу и через круглое окно в по­лость среднего уха. Имен но в последнем случае раздражаются слуховые ре­цепторы (рис. 8).

Пространственное кодирование частоты звуков. Еще в 1863 г. А. Гельмгольц сформулировал резонансную теорию слуха, согласно которой разные час­тоты кодируются своим положением вдоль основной мембраны. Самые короткие волокна в узкой части близ основания улитки резонируют в ответ на высокие час­тоты, а те, что лежат ближе к вершине, в расширенной части основной мембраны, — на самые низкие частоты.

В 50-60-е гг. прошлого столетия венгерский учёный Г. Бекеши предложил свою новую теорию - теорию бегущей волны. Г. Бекеши было установлено, что основная мембрана жестче всего у основания улитки, т.е. там, где она уже. По направлению к вершине ее жесткость постепенно уменьшается. При колебаниях мембраны волны "бегут" от ее основания к вершине. Градиент жесткости мем­браны всегда заставляет волны двигаться от овального окна и никогда в обратном направлении. Высокочастотные колебания продвигаются по основной мембране лишь на короткое расстояние, а длинные низкочастотные волны распространяют­ся довольно далеко (рис. 8).

Волокна мембраны приходят в колебательные движения вместе с рецепторными клетками кортиева органа, расположенными на них. При этом волоски ре­цепторных клеток контактируют с текториальной мембраной, реснички волоско­вых клеток деформируются. Возникает вначале рецепторный потенциал, который передаётся через синапс на отростки слухового нерва, затем генерируется потен­циал действия (нервный импульс), распространяющийся по слуховому нерву к вышележащим отделам слухового анализатора.