Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен ксе2.docx
Скачиваний:
9
Добавлен:
20.09.2019
Размер:
317.35 Кб
Скачать

76) Образование планеты Земля.

Отвечая на вопрос, когда возникла на Земле жизнь, мы получили довольно убедительный ответ – 3.8-4.0 млрд. лет назад. При этом есть все основания предположить, что Земля 4 млрд. лет назад уже окончательно сформировалась как планета и даже приобрела и удерживала своим гравитационным полем вторичную атмосферу1.

Можно считать доказанным (с большой степенью вероятности), что Земля, как и другие планеты Солнечной системы, в этот период получила из Космоса значительный запас «биостроительного материала» для жизни, в виде белковых «полуфабрикатов» и простейших форм организмов. А дальше, видимо, эволюция жизни на Земле характеризовалась тенденцией к постепенному ускорению с определенным чередованием относительно коротких периодов ароморфозов (морфофизиологический прогресс, - возникновение в ходе эволюции признаков, повышающих уровень организации живых существ) и последующих длительных периодов идиоадаптации (частные приспособления живого мира, позволяющие освоить специфические условия среды).

Как это было на самом деле, не знает никто, но попытаться построить наиболее правдоподобную модель этого процесса (по тому богатейшему материалу, которым располагает современная наука) все же можно. При построении общей схемы геохронологической эволюционной шкалы Земли было использовано старое (традиционное) наименование эр, что видимо уже несколько устарело в связи с вышеизложенным, особенно на ранней стадии развития жизни на нашей планете, в эру Катархея и Архея.

77) Периодический закон Д. И. Менделеева — фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. Открыт Д. И. Менделеевым в марте 1869 года при сопоставлении свойств всех известных в то время элементов и величин их атомных масс. Термин «периодический закон» Менделеев впервые употребил в ноябре 1870, а в октябре 1871 дал окончательную формулировку Периодического закона: «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».[1] Графическим (табличным) выражением периодического закона является разработанная Менделеевым периодическая система элементов.

Закон Авога́дро — одно из важных основных положений химии, гласящее, что «в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул». Было сформулировано ещё в 1811 году Амедео Авогадро (1776—1856), профессором физики в Турине. Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона:

Закон сохранения массы — исторический закон физики, согласно которому масса как мера количества вещества сохраняется при всех природных процессах, то есть несотворима и неуничтожима. С точки зрения современной физики, этот закон неверен. Например, при радиоактивном распаде совокупная масса вещества уменьшается.

Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.

78) Хими́ческая реа́кция — превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции). В отличие от ядерных реакций, при химических реакциях ядра атомов не меняются, в частности не изменяется их общее число, изотопный состав химических элементов, при этом происходит перераспределение электронов и ядер и образуются новые химические вещества.

Хими́ческое соедине́ние — сложное вещество, состоящее из химически связанных атомов двух или нескольких элементов. Некоторые простые вещества также могут рассматриваться как химические соединения, если их молекулы состоят из атомов, соединённых ковалентной связью (азот, кислород, иод, бром, хлор, фтор, предположительно астат).

79) Реакционная способность - характеристика химической активности веществ, учитывающая как разнообразие реакций, возможных для данного вещества, так и их скорость. Например, благородные металлы (Au, Pt) и инертные газы (Не, Ar, Kr, Xe) химически инертны, т. е. у них низкая Р. с.; щелочные металлы (Li, Na, К, Cs) и галогены (F, Cl, Вг, I) химически активны, т. е. обладают высокой Р. с. В органической химии Насыщенные углеводороды характеризуются низкой Р. с., для них возможны немногочисленные реакции (радикальное галогенирование и нитрование, дегидрирование, деструкция с разрывом С—С-связей и некоторые др.), происходящие в жёстких условиях (высокая температура, ультрафиолетовое облучение). Для галогенопроизводных насыщенных углеводородов уже возможны, кроме того, реакции дегидрогалогенирования, нуклеофильного замещения галогена, образования магнийорганических соединений и др., происходящие в мягких условиях.

Скорость химической реакции — изменение количества вещества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым понятием химической кинетики. Скорость химической реакции — величина всегда положительная, поэтому, если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение домножается на −1.

Например для реакции:

выражение для скорости будет выглядеть так:

.

Ката́лиз (греч. κατάλυσις восходит к καταλύειν — разрушение) — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.

80) Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

  • Реакция должна протекать либо при постоянном объёме Qv(изохорный процесс), либо при постоянном давлении Qp(изобарный процесс).

  • В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

81) ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ, химические СОЕДИНЕНИЯ, содержащие химический элемент УГЛЕРОД. Их насчитывается приблизительно в сто раз больше, чем неорганических соединений. К органическим соединениям относятся УГЛЕВОДОРОДЫ, базовая структура, которая, соединяясь с атомами других элементов (например, кислородом или азотом), образует большое количество органических соединений, включая и те, что являются жизненно необходимыми.

82) Фотосинтез (от греч. φωτο- — свет и σύνθεσις — синтез, совмещение, помещение вместе) — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

83) Углево́ды (сахариды) — общее название обширного класса природных органических соединений. Название происходит от слов «уголь» и «вода». Причиной этого является то, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

Аминокисло́ты (аминокарбо́новые кисло́ты) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы.

Белки́ (протеи́ны, полипепти́ды[1]) — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций дают большое разнообразие свойств молекул белков. Кроме того, аминокислоты в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул белков образуют сложные комплексы, например, фотосинтетический комплекс.

85) Биологи́ческая система́тика — научная дисциплина, в задачи которой входит разработка принципов классификации живых организмов и практическое приложение этих принципов к построению системы. Под классификацией здесь понимается описание и размещение в системе всех существующих и вымерших организмов[1].

Завершающим этапом работы систематика, отражающим его представления о некой группе живых организмов, является создание Естественной Системы. Предполагается, что эта система, с одной стороны лежит в основе природных явлений, с другой стороны является лишь этапом на пути научного исследования. В соответствии с принципом познавательной неисчерпаемости природы естественная система недостижима

Система классификации Линнея Все живые существа можно классифицировать с помощью иерархической системы, в основе которой лежат категории рода и вида. Карл Линней, шведский физиолог, был профессором медицины в университете города Упсала. Он заведовал большим ботаническим садом, который был нужен университету для проведения научных исследований. Люди присылали ему растения и семена со всего света для выращивания в ботаническом саду. Именно благодаря интенсивному изучению этой огромной коллекции растений Карл Линней сумел решить задачу систематизации всех живых существ сегодня ее назвали бы задачей таксономии (систематики). Можно сказать, что он придумал категории для популярной в Америке викторины Двадцать вопросов, в которой первым делом спрашивают, относится ли предмет к животным, растениям или минералам. В системе Линнея действительно все относится либо к животным, либо к растениям, либо к неживой природе (минералам). Чтобы легче понять принцип систематизации, представьте, что вы хотите классифицировать все дома в мире.

86) Эволюцио́нное уче́ние (также эволюционизм и эволюционистика) — система идей и концепций в биологии, утверждающих историческое прогрессивное развитие биосферы Земли, составляющих её биогеоценозов, а также отдельных таксонов и видов, которое может быть вписано в глобальный процесс эволюции вселенной. Первые эволюционные идеи выдвигались уже в античности, но только труды Чарлза Дарвина сделали эволюционизм фундаментальной концепцией биологии. Хотя единой и общепризнанной теории биологической эволюции до сих пор не создано, сам факт эволюции сомнению ученых не подвергается, так как имеется огромное число подтверждающих научных фактов и теорий.

Основные принципы эволюционной теории Ч. Дарвина. Сущность дарвиновской концепции эволюции сводится к ряду логичных, проверяемых в эксперименте и подтвержденных огромным количеством фактических данных положений:

1. В пределах каждого вида живых организмов существует огромный размах индивидуальной наследственной изменчивости по морфологическим, физиологическим, поведенческим и любым другим признакам. Эта изменчивость может иметь непрерывный, количественный, или прерывистый качественный характер, но она существует всегда.

2. Все живые организмы размножаются в геометрической прогрессии.

3. Жизненные ресурсы для любого вида живых организмов ограничены, и поэтому должна возникать борьба за существование либо между особями одного вида, либо между особями разных видов, либо с природными условиями. В понятие «борьба за существование» Дарвин включил не только собственно борьбу особи за жизнь, но и борьбу за успех в размножении.

4. В условиях борьбы за существование выживают и дают потомство наиболее приспособленные особи, имеющие те отклонения, которые случайно оказались адаптивными к данным условиям среды. Это принципиально важный момент в аргументации Дарвина. Отклонения возникают не направленно — в ответ на действие среды, а случайно. Немногие из них оказываются полезными в конкретных условиях. Потомки выжившей особи, которые наследуют полезное отклонение, позволившее выжить их предку, оказываются более приспособленными к данной среде, чем другие представители популяции.

5. Выживание и преимущественное размножение приспособленных особей Дарвин назвал естественным отбором.

6. Естественный отбор отдельных изолированных разновидностей в разных условиях существования постепенно ведет к дивергенции (расхождению) признаков этих разновидностей и, в конечном счете, к видообразованию.

На этих постулатах, безупречных с точки зрения логики и подкрепленных огромным количеством фактов, была создана современная теория эволюции.

Главная заслуга Дарвина в том, что он установил механизм эволюции, объясняющий как многообразие живых существ, так и их изумительную целесообразность, приспособленность к условиям существования. Этот механизм — постепенный естественный отбор случайных ненаправленных наследственных изменений.

87) Вид (лат. species) — таксономическая, систематическая единица, группа особей с общими морфофизиологическими, биохимическими и поведенческими признаками, способная к взаимному скрещиванию, дающему в ряду поколений плодовитое потомство, закономерно распространённая в пределах определённого ареала и сходно изменяющаяся под влиянием факторов внешней среды. Вид — реально существующая единица живого мира, основная структурная единица в системе организмов.

Популя́ция (от лат. populatio — население) — термин, используемый в различных разделах биологии, а также в генетике, демографии, медицине и психометрике. Самый общий смысл заключается в дословном переводе. Популяция — это человеческое, животное или растительное население некоторой местности. В европейских языках это понятие прежде всего относится к человеку и уже во вторую очередь — к другим живым организмам. В русском языке популяция имеет более специальное значение как термин, преимущественно используемый в биологических и медицинских исследованиях.

Биоценоз (от греч. βίος — «жизнь» и κοινός — «общий») — это совокупность животных, растений, грибов и микроорганизмов, что заселяют определённый участок суши или акватории, они связаны между собой и со средой. Б. — это динамическая, способная к саморегулированию система, компоненты (продуценты, консументы, редуценты), которой взаимосвязаны.

Биогеоценоз (от греч. βίος — жизнь γη — земля + κοινός — общий) — система, включающая сообщество живых организмов и тесно связанную с ним совокупность абиотических факторов среды в пределах одной территории, связанные между собой круговоротом веществ и потоком энергии. Представляет собой устойчивую саморегулирующуюся экологическую систему, в которой органические компоненты (животные, растения) неразрывно связаны с неорганическими (вода, почва). Примеры: сосновый лес, горная долина. Учение о биогеоценозе разработано Владимиром Сукачёвым в 1940 году. В зарубежной литературе — малоупотребимо. Ранее также широко употреблялось в немецкой научной литературе.

Учение В. И. Вернадского о биосфере

Характеристика главных типов веществ биосферы

По современным представлениям, биосфера – это особая оболочка земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами.

Эти представления базируются на учении В. И. Вернадского(1863 –1945) о биосфере, являющимся крупнейшим из обобщений в области естествознания в ХХ в. Важнейшая значимость его учения во весь рост проявилась лишь во второй половине века. Этому способствовало развитие экологии и, прежде всего глобальной экологии, где биосфера является основополагающим понятием.

Учение Вернадского о биосфере – это целостное фундаментальное учение, органично связанное с важнейшими проблемами сохранения и развития жизни на Земле, знаменующее собой принципиально новый подход к изучению планеты как развивающейся саморегулирующейся системы в прошлом, настоящем и будущем.

По представлениям В. И. Вернадского, биосфера включает в себя живое вещество, образованное совокупностью организмов; биогенное вещество, которое создается в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, торф, известняки и др.); косное вещество, которое формируется без участия живых организмов (магматические горные породы); биокосное вещество, представляющее собой совместный результат жизнедеятельности организмов и небиологических процессов (например, почвы); а также радиоактивное вещество, вещество космического происхождения (метеориты и др.) и рассеяные атомы. Все эти семь типов веществ геологически связаны между собой.

Косное вещество биосферы.

Границы биосферы определяются факторами земной среды, которые делают невозможным существование живых организмов. Верхняя граница проходит примерно на высоте 20 км от поверхности планеты и ограничена слоем озона, который задерживает губительные для жизни коротковолновую часть ультрафиолетового излучения Солнца. Таким образом, живые организмы могут существовать в тропосфере и нижних слоях стратосферы. В гидросфере земной коры организмы проникают на всю глубину Мирового океана - до 10-11 км. В литосфере жизнь встречается на глубине 3,5-7,5 км, что обусловлено температурой земных недр и условием проникновения воды в жидком состоянии.

Атмосфера.

Газовая оболочка состоит в основном из азота и кислорода. В небольших количествах в ней содержится диоксид углерода (0,03%) и озон. Состояние атмосферы оказывает большое влияние на физические, химические и биологические процессы на поверхности Земли и в водной среде. Для биологических процессов наибольшее значение имеют: кислород, используемый для дыхания и минерализации мертвого органического вещества, диоксид углерода, участвующий в фотосинтезе, и озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Азот, диоксид углерода, пары воды образовались в значительной мере благодаря вулканической деятельности, а кислород - в результате фотосинтеза.

Гидросфера.

Вода - важнейший компонент биосферы и один из необходимых факторов существования живых организмов. Основная ее часть (95%) находится в Мировом океане, который занимает около 70% поверхности земного шара и содержит 1300 млн. км3. Поверхностные воды (озера, реки) включают всего 0,182 млн. км3, а количество воды в живых организмах составляет всего 0,001 млн. км3. Значительные запасы воды (24 млн. км3) содержат ледники. Большое значение имеют газы, растворенные в воде: кислород и диоксид углерода. Их количество широко варьирует от температуры и присутствия живых организмов. Диоксида углерода, содержащегося в воде, в 60 раз больше, чем в атмосфере. Гидросфера формировалась в связи с развитием литосферы, которая в течение геологической истории Земли выделяла большое количество водяного пара.

Литосфера.

Основная масса организмов, обитающих в пределах литосферы, находится в почвенном слое, глубина которого не превышает нескольких метров. Почва включает минеральные вещества, образующиеся при разрушении горных пород, и органические вещества - продукты жизнедеятельности организмов.

89) Ноосфе́ра (греч. νόος — «разум» и σφαῖρα — «шар») — сфера взаимодействия общества и природы, в границах которой разумная человеческая деятельность становится определяющим фактором развития (эта сфера обозначается также терминами «антропосфера», «биосфера», «биотехносфера»)[1].

Ноосфера — предположительно новая, высшая стадии эволюции биосферы, становление которой связано с развитием общества, оказывающего глубокое воздействие на природные процессы. Согласно В. И. Вернадскому, «в биосфере существует великая геологическая, быть может, космическая сила, планетное действие которой обычно не принимается во внимание в представлениях о космосе… Эта сила есть разум человека, устремленная и организованная воля его как существа общественного»[1].

Переход биосферы в ноосферу.

Все возрастающая мощь технологий, призванных, в конечном счете, удовлетворить потребности человечества в средствах существования, пришла в противоречие с возможностью биосферы обеспечить эти потребности без вреда для нее. Стихийные взаимоотношения с природой привели к тому, что для обеспечения этих потребностей приходится затрачивать все больше природных ресурсов для получения продукции, обеспечивающей жизнедеятельность человека.

В результате во все увеличивающихся объемах расходуются так называемые невосстанавливаемые ресурсы – уголь, нефть, газ, металл, полезные ископаемые. Вырубаются леса, отходами производства загрязняются атмосфера и гидросфера. Локальные антропогенные воздействия на биосферу сливаются в глобальные ее разрушения. В результате во второй половине ХХ века возникло глобальное противоречие между техносферой, сформировавшейся как результат роста производительных сил человечества, направленных на обеспечение его биологических и социальных потребностей, и биосферой – частью природы, обеспечивающей возможность удовлетворения этих потребностей. Противоречие заключается в том, что человек, «перерабатывая земную оболочку», своей деятельностью разрушает биосферу, которая вынуждена адаптироваться к взаимодействию с техносферой.

В 60-х годах ХХ века впервые ученые с тревогой заговорили об экологическом кризисе. Первыми почувствовали на себе его последствия экономически развитые капиталистические государства, природная среда которых не могла уже самоочищаться от промышленных и бытовых загрязнений. Это явилось следствием стихийного природоиспользования, свойственного частнокапиталистическим отношениям, когда предприниматели, преследуя высокие прибыли, пренебрегают строительством природоохранительных сооружений и идут на то, чтобы выбрасывать в гидроатмосферу ядовитые вещества. Все возрастающие объемы промышленного производства требовали все больших расходов природного сырья. Футурологи провозгласили в качестве спасательной меры лозунг «назад к природе», призывая прекратить дальнейшее развитие производства, ограничить, таким образом, потребление. Иначе, утверждали они, человечество через 50-100 лет погибнет, исчерпав природные ресурсы планеты и отравив себя отходами производства.

Появились пессимистические прогнозы, посвященные медицинским проблемам будущего. Возникло понятие «болезни цивилизации». Это такие заболевания как – рак, ишемическая болезнь, нервно-психические расстройства, их «омоложение» – пытались возложить на воздействие техносферы.

Действительно, экологическая проблема, возникшая перед человечеством, имеет огромное значение. Период стихийного развития технической мощи человечества, в результате которого биосфера изменяется качественно, должен сменится новым уровнем, скачком, обусловливающим превращение биогенной эволюции органического мира в ноогенную, переход от стихийного использования природы к сознательному регулированию взаимоотношений между природой и обществом, основанному на социальных предпосылках бесклассового общества. Этап техносферы, в продолжение которой неизбежно наносится определенный ущерб природным ресурсам, обогащает общество информацией о природных процессах и путях их рационального использования. Превращение биосферы в ноосферу – сферу разума сопровождаются на уровне техносферы отрицательными воздействиями на природу субъективного характера. Антропогенные воздействия имеют в основе не биологические, а социальные причины. «Осуществляемое человечеством перераспределение энергии и вещества (из биосферы в общество) вначале сопровождается значительными потерями и обедняет природу», - писал Г.Ф. Хильми.

Переход от биосферы к ноосфере характеризуется в первую очередь тем, что овладение человечеством материальными и энергетическими ресурсами биосферы, которое привело к созданию техносферы, меняется в сторону овладения информационными взаимосвязями и процессами в биосфере. Т.е. определяющим фактором дальнейшего развития природы и общества как единого целого становится не просто использование природных процессов, а управление ими в соответствии с законами природы.

Следовательно, экстенсивный подход к освоению природных богатств исчерпывает себя. Громадные пространства суши используются непроизводительно, естественные биогеоценозы разрушаются, снижая продуктивность.

Сопряженная эволюция человечества и биосферы в результате становления ноосферы приведет к коренным изменениям в обеспечении здоровья человека. Колоссальная энергия Солнца, получаемая Землей в настоящее время, захватывается и преобразуется растениями в очень малом объеме. Освоив методы более производительного использования солнечной энергии, человек освободится от необходимости дальнейшего растрачивания энергии, накопленной растениями в виде древесины, угля, нефти, газа. Появится возможность использовать солнечную энергию на восстановление разрушенных участков биосферы, с одной стороны, и на обуздание стихийных сил природы, наносящих ущерб человеческой деятельности, - с другой. Изменятся технологические процессы, связанные с переработкой энергии, исчезнут шлейфы дыма над городами и отвалы шлака и других отходов. Улучшится здоровье человека за счет совершенствования защитных механизмов.

90) Гомеоста́з (др.-греч. ὁμοιοστάσις от ὁμοιος — одинаковый, подобный и στάσις — стояние, неподвижность) — саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия. Стремление системы воспроизводить себя, восстанавливать утраченное равновесие, преодолевать сопротивление внешней среды.

Экологический кризис — особый тип экологической ситуации, когда среда обитания одного из видов или популяции изменяется так, что ставит под сомнение его дальнейшее выживание. Основные причины кризиса:

  • Абиотические: качество окружающей среды деградирует по сравнению с потребностями вида после изменения абиотических экологических факторов (например, увеличение температуры или уменьшение количества дождей).

  • Биотические: окружающая среда становится сложной для выживания вида (или популяции) из-за увеличенного давления со стороны хищников или из-за перенаселения.

Кризис может быть:

  • глобальным;

  • локальным.

Бороться с глобальным экологическим кризисом гораздо труднее, чем с локальным. Решение этой проблемы можно достигнуть только минимизацией загрязнений, произведенных человечеством, до уровня, с которым экосистемы будут в состоянии справиться самостоятельно. В настоящее время глобальный экологический кризис включает четыре основных компонента: кислотные дожди, парниковый эффект, загрязнение планеты суперэкотоксикантами и так называемые озоновые дыры.

Эволюционная теория прерывистого равновесия предполагает, что редкие экологические кризисы могут быть двигателем быстрой эволюции.