Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на вопросы к экзамену(1-10).docx
Скачиваний:
10
Добавлен:
20.09.2019
Размер:
285.47 Кб
Скачать

1. Определение линейных и нелинейных электрических цепей. Электромагнитное устройство с происходящими в нем и в окружа-ющем его пространстве физическими процессами в теории элект-рических цепей заменяют некоторым расчетным эквивалентом — электрической цепью. Электрической цепью называют совокупность соединенных друг с другом источников электрической энергии и нагрузок, по которым может протекать электрический ток. Электромагнитные процессы в электрической цепи можно описать с помощью понятий «ток», «напряжение», «ЭДС», «сопротивление» («проводимость»), «индуктивность», «емкость». Постоянным током называют ток, неизменный во времени. По-стоянный ток представляет собой направленное упорядоченное движение частиц, несущих электрические заряды. Как известно из курса физики, носителями зарядов в металлах являются свободные электроны, а в жидких — ионы. Упорядоченное движение носителей зарядов в проводниках вызывается элект-рическим полем, созданным в них источниками электрической 

энергии. Источники электрической энергии преобразуют химиче¬скую, механическую и другие виды энергии в электрическую. Ис¬очник электрической энергии характеризуется значением и направлением ЭДС, а также значением внутреннего сопротивления. Постоянный ток принято обозначать буквой i, ЭДС источника — Е, сопротивление — R, проводимость — g. В Международной системе единиц (СИ) единица тока — ампер (А), единица ЭДС — вольт (В), единица сопротивления — ом (Ом), единица проводимости — сименс (См). Изображение электрической цепи с помощью условных знаков называют электрической схемой (рис. 2.1, а). Зависимость тока, протекающего по сопротивлению, от напряжения на этом сопротивлении называют вольт-амперной характеристикой (ВАХ). По оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток. Сопротивления, ВАХ которых являются прямыми линиями (рис. 2.1, б), называют линейными, электрические цепи только с линейными сопротивлениями — линейными электрическими цепями. Сопротивления, ВАХ которых не являются прямыми линиями (рис. 2.1, в), т. е. они нелинейны, называют нелинейными, а электрические цепи с нелинейными сопротивлениями — нелинейными электрическими цепями.

2.Источники ЭДС и источники тока. Источники электрической энергии являются необходимым элементом любой электрической цепи.

Их разделяют на идеальные и реальные источники. В свою очередь, идеальные источники делятся на источники электродвижущей силы (ЭДС) и источники тока .

Источники ЭДС - это такие элементы электрической цепи, у которых разность потенциалов на выходе не зависит от величины и направления протекания тока, т.е. их вольтамперные характеристики (ВАХ) представляют собой прямые линии параллельные оси (см. таблицу 2).

Направление стрелки в условном обозначении источника ЭДС указывает направление действия ЭДС, поэтому направление падения напряжения на выходных зажимах источника всегда противоположно.

Так как на ВАХ электрическое сопротивление соответствует котангенсу угла наклона характеристики, то сопротивление источника ЭДС равно нулю, а проводимость, соответственно, бесконечности.

Источники тока - это такие элементы электрической цепи, у которых протекающий через них ток не зависит от знака и значения разности потенциалов на выходе, т.е. их (ВАХ) представляют собой прямые линии параллельные оси (см. . таблицу 2).

Отсюда, сопротивление источника тока равно бесконечности, а проводимость - нулю.

Направление стрелки в условном обозначении источника тока указывает направление протекания тока.

Источники ЭДС и источники тока часто рассматриваются как некие абстракции, не имеющие реального физического воплощения. Однако, это справедливо только, если считать , что их ВАХ не имеют ограничения. В этом случае ток через источник ЭДС или падение напряжения на источнике тока могут достигать бесконечно больших значений. При этом мощность источника (P=UI) должна быть бесконечно большой, что исключает возможность технической реализации.

Если же ток и/или напряжение источника ограничено, то свойствами идеального источника обладают, например, стабилизированные источники питания, типичная ВАХ которых приведена на рис. 1

В ыходное напряжение такого устройства Uвых постоянно до тех пор, пока ток нагрузки не достигнет максимально допустимого значения Imax , после чего источник питания из режима стабилизации напряжения переходит в режим стабилизации тока. В пределах обоих режимов источник питания обладает свойствами соответственно идеального источника ЭДС и источника тока.

Идеальные источники ЭДС и тока используются также для моделирования некоторых электромагнитных процессов и нелинейных элементов электрических цепей, таких, например, как диод.

 При расчете и анализе электрических цепей реальный источник электрической энергии с конечным значением величины внутреннего сопротивления r0 заменяют расчетным эквивалентным источником ЭДС или источником тока.

Рис. 1.14

Источник ЭДС (рис. 1.14) имеет внутреннее сопротивление r0, равное внутреннему сопротивлению реального источника. Стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС.

Для данной цепи запишем соотношение по второму закону Кирхгофа

(1.10)

E=U+Ir0 или E=UIr0.

Эта зависимость напряжения U на зажимах реального источника от тока I определяется его вольт-амперной или внешней характеристикой (рис. 1.15). Уменьшение напряжения источника U при увеличении тока нагрузки I объясняется падением напряжения   на его внутреннем сопротивлении r0.

Рис. 1.15

Рис. 1.16

У идеального источника ЭДС внутреннее сопротивление r0<<Rн (приближенно r0≈0). В этом случае его вольт-амперная характеристика представляет собой прямую линию (рис. 1.16), следовательно, напряжение U на его зажимах постоянно (U=E) и не зависит от величины сопротивления нагрузки Rн.

Рис. 1.17

Источник тока, заменяющий реальный источник электрической энергии, характеризуется неизменным по величине током Iк, равным току короткого замыкания источника ЭДС  , и внутренним сопротивлениеr0, включенным параллельно (рис. 1.17).

Стрелка в кружке указывает положительное направление тока источника. Для данной цепи запишем соотношение по первому закону Кирхгофа

Iк=I0+I .

В этом случае вольт-амперная (внешняя) характеристика I(U) источника тока определится соотношением

(1.11)

I=IкI0=IкU/r0

и представлена на рис. 1.18.

Рис. 1.18

Рис. 1.19

Уменьшение тока нагрузки I при увеличении напряжения U на зажимах ab источника тока, объясняется увеличением тока I0, замыкающегося в цепи источника тока.

В идеальном источнике тока r0>>Rн. В этом случае можно считать, что при изменении сопротивления нагрузки Rн потребителя I0≈0, аIIк. Тогда из выражения (1.11) следует, что вольт-амперная характеристика I(U) идеального источника тока представляет прямую линию, проведенную параллельно оси абсцисс на уровне I=Iк=E/r0 (рис. 1.19).

При сравнении внешних характеристик источника ЭДС (рис. 1.15) и источника тока (рис. 1.18) следует, что они одинаково реагируют на изменение величины сопротивления нагрузки. Покажем, что в обоих случаях ток I в нагрузке определяется одинаковым соотношением.

Ток в нагрузке Rн для схем источника ЭДС (рис. 1.14) и источника тока (рис. 1.17) одинаков и равен  .

Для схемы (рис. 1.14) это следует из закона Ома, т.к. при последователь-ном соединении сопротивления r0 и Rн складываются. В схеме (рис. 1.17) ток   распределяется обратно пропорционально сопротивлениям r0 и Rн двух параллельных ветвей. Ток в нагрузке Rн

,

т.е. совпадает по величине с током при подключении нагрузки к источнику ЭДС. Следовательно, схема источника тока (рис. 1.17) эквивалентна схеме источника ЭДС (рис. 1.14) в отношении энергии, выделяющейся в сопротивлении нагрузки Rн, но не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника питания.

Каким из двух эквивалентных источников питания пользоваться, не играет существенной роли. Однако на практике, особенно при расчете электротехнических устройств, чаще используется в качестве источника питания источник ЭДС с внутренним сопротивлением r0 и величиной электродвижущей силы E.

В тех случаях, когда номинальное напряжение или номинальный ток и мощность источника электрической энергии оказываются недостаточными для питания потребителей, вместо одного используют несколько источников. Существуют два основных способа соединения источников питания: последовательное и параллельное.

Последовательное включение источников питания (источников ЭДС) применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС (рис. 1.20).

Рис. 1.20

Для этой цепи на основании второго закона Кирхгофа можно записать

E1+E2+E3=I(r01+r02+r03+Rн),

откуда

.

Таким образом, электрическая цепь на рис. 1.20 может быть заменена цепью с эквивалентным источником питания (рис. 1.21), имеющим ЭДСEэ и внутреннее сопротивление rэ.

Рис. 1.21

Рис. 1.22

При параллельном соединении источников (рис. 1.22) соединяются между собой положительные выводы всех источников, а также их отрицательные выводы. Характерным для параллельного соединения является одно и то же напряжение U на выводах всех источников. Для электрической цепи на рис. 1.22 можно записать следующие уравнения:

I=I1+I2+I3P=P1+P2+P3=UI1+UI2+UI3=UI.

Как видно, при параллельном соединении источников ток и мощность внешней цепи равны соответственно сумме токов и мощностей источников. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. На параллельную работу включают обычно источники с одинаковыми ЭДС, мощностями и внутренними сопротивлениями.

3.Закон Ома справедлив для цепей постоянного и переменного синусоидального тока и связывает между собой величины сопротивления элемента цепи, его тока и напряжения: Падение напряжения на участке цепи пропорционально току и величине сопротивления этого участка: при постоянном токе: U=Ir, при переменном токе: U=Iz. Например, для электрической цепи:  Электрическая схема цепи, содержащей два источника ЭДС с внутренними сопротивлениями Rb1 и Rb2, две активные и одну пассивную ветви, соеденённые в узлах a и b U1=I1R1. Закон Ома для участка цепи

Соотношение между током I, напряжением UR и сопротивлением R участка аb электрической цепи (рис. 1.3) выражается законом Ома

Рис. 1.3

(1.1)

 или UR=RI.

В этом случае UR=RI – называют напряжением или падением напряжения на резисторе R, а   – током в резисторе R.

При расчете электрических цепей иногда удобнее пользоваться не сопротивлением R, а величиной обратной сопротивлению, т.е. электрической проводимостью:

.

В этом случае закон Ома для участка цепи запишется в виде:

I=Ug.

Закон Ома для всей цепи

Этот закон определяет зависимость между ЭДС E источника питания с внутренним сопротивлением r0 (рис. 1.3), током I электрической цепи и общим эквивалентным сопротивлением RЭ=r0+R всей цепи:

(1.2)

.

Сложная электрическая цепь содержит, как правило, несколько ветвей, в которые могут быть включены свои источники питания и режим ее работы не может быть описан только законом Ома. Но это можно выполнить на основании первого и второго законов Кирхгофа, являющихся следствием закона сохранения энергии.

4,5 Законы Кирхгофа  Как известно, для любой электрической цепи справедливы законы Кирхгофа для токов и напряжений.  Первый закон Кирхгофа  Алгебраическая сумма токов в проводниках, соединенных в узел, равна нулю    Узлом в электрической цепи называется место соединения трёх и более ветвей, место соединения двух ветвей называется устранимым узлом. В  ток берется со знаком плюс, если ток втекает в узел, и со знаком минус, если вытекает.  Ветвью называется участок цепи с последовательным соединением элементов. Замкнутым контуром цепи называется путь по ветвям цепи, который начинается и заканчивается в одном и том же узле.  Второй закон Кирхгофа  Алгебраическая сумма ЭДС всех источников в любом замкнутом контуре цепи равна алгебраической сумме напряжений на всех остальных элементах того же контура    Для составления уравнения необходимо задать направление обхода контура: по направлению часовой стрелки либо против часовой стрелки. В  ЭДС и напряжения берутся со знаком плюс, если их направления совпадают с направлением обхода контура, если не совпадают, то со знаком минус.  Система независимых контуров составляется так, что в контур включаются только ветви с неизвестными токами, рекомендуется, чтобы ветвь входила в контур только один раз, а в каждый последующий контур должна входить хотя бы одна ветвь с неизвестным током, не вошедшая в предыдущие контуры.    Для расчетов всех неизвестных токов в схеме составляется система уравнений Кирхгофа. По первому закону Кирхгофа n1=q-1 уравнений, где q — число узлов в схеме. По второму закону Кирхгофаnbsp;—nbsp;n2=p-q+1 уравнений, где р — число ветвей в схеме с неизвестными токами. Значение n2 соответствует числу независимых контуров схемы.  Так для схемы  q=6, p=5. n 1=5 и n 2=3  Для схемы составлены системы уравнений: 

по первому закону Кирхгофа для узлов  1 — 5

по второму закону Кирхгофа для узлов  1, — 3

Решая систему уравнений, можно определить токи I 1…I 8

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

(1.3)

,

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 1.2) II1I2=0.

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

(1.4)

,

где n – число источников ЭДС в контуре; m – число элементов с сопротивлением Rk в контуре; Uk=RkIk – напряжение или падение напряжения на k-м элементе контура.

Для схемы (рис. 1.2) запишем уравнение по второму закону Кирхгофа:

E=UR+U1.

Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контру, включая источники ЭДС равна нулю

(1.5)

.

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рис. 1.2):

контур I: E=RI+R1I1+r0I,

контур II: R1I1+R2I2=0,

контур III: E=RI+R2I2+r0I.

В действующей цепи электрическая энергия источника питания преобразуется в другие виды энергии. На участке цепи с сопротивлением R в течение времени t при токе I расходуется электрическая энергия

(1.6)

W=I2Rt.

Скорость преобразования электрической энергии в другие виды представляет электрическую мощность

(1.7)

.

Из закона сохранения энергии следует, что мощность источников питания в любой момент времени равна сумме мощностей, расходуемой на всех участках цепи.

(1.8)

.

Это соотношение (1.8) называют уравнением баланса мощностей. При составлении уравнения баланса мощностей следует учесть, что если действительные направления ЭДС и тока источника совпадают, то источник ЭДС работает в режиме источника питания, и произведение EIподставляют в (1.8) со знаком плюс. Если не совпадают, то источник ЭДС работает в режиме потребителя электрической энергии, и произведениеEI подставляют в (1.8) со знаком минус. Для цепи, показанной на рис. 1.2 уравнение баланса мощностей запишется в виде:

EI=I2(r0+R)+I12R1+I22R2.

При расчете электрических цепей используются определенные единицы измерения. Электрический ток измеряется в амперах (А), напряжение – в вольтах (В), сопротивление – в омах (Ом), мощность – в ваттах (Вт), электрическая энергия – ватт-час (Вт-час) и проводимость – в сименсах (См)

Кроме основных единиц используют более мелкие и более крупные единицы измерения: миллиампер (1 мA = 10–3 А), килоампер (1 кA = 103 А), милливольт (1 мВ = 10–3 В), киловольт (1 кВ = 103 В), килоом (1 кОм = 103 Ом), мегаом (1 МОм = 106 Ом), киловатт (1 кВт = 103 Вт), киловатт-час (1 кВт-час = 103 ватт-час).

6.  Энергетический баланс в электрических цепях. При протекании токов по сопротивлениям в последних выделяется теплота. На основании закона сохранения энергии количество теплоты, вы-деляющееся в единицу времени в сопротивлениях схемы, должно равняться энергии, доставляемой за то же время источником питания. Если направление тока I, протекающего через источник ЭДС E, совпадает с направлением ЭДС, то источник ЭДС доставляет в цепь энергию в единицу времени (мощность), равнуюEI, и произведение EI входит в уравнение энергетического баланса с положительным знаком. Если же направление тока I встречно направлению ЭДС Е, то источник ЭДС не поставляет энергию, а потребляет ее (например, заряжается аккумулятор), и произведение EIвойдет в уравнение энергетического баланса с отрицательным знаком.  Уравнение энергетического баланса при питании только от источников ЭДС имеет вид   Когда схема питается не только от источников ЭДС, но и от источников тока, т. е. к отдельным узлам схемы подтекают и от них утекают токи источников тока, при составлении уравнения энерге-тического баланса необходимо учесть и энергию, доставляемую источниками тока. Допустим, что к узлу а схемы подтекает ток I от источника тока, а от узла b этот ток утекает. Доставляемая источником тока мощность равна UabJ. Напряжение Uab и токи в ветвях схемы должны быть подсчитаны с учетом тока, подтекающего от источника тока. Последнее проще всего сделать по методу узловых потенциалов (см. § 2.22). Общий вид уравнения энергетического баланса:   Для практических расчетов электрических цепей разработаны методы, более экономичные в смысле затраты времени и труда, чем метод расчета цепей по законам Кирхгофа. Рассмотрим эти методы.

7. Метод контурных токов. При расчете методом контурных токов полагают, что в каждом независимом контуре схемы течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей. Таким образом, метод контурных токов можно определить как метод расчета, в котором за искомые принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, которые необходимо было бы составить для схемы по второму закону Кирхгофа. Следовательно, метод контурных токов более экономен при вычислительной работе, чем метод на основе законов Кирхгофа (в нем меньше число уравнений). Вывод основных расчетных уравнений приведем применительно к схеме рис. 2.12, в которой два независимых контура. Положим, что в левом контуре по часовой стрелке течет контурный ток I11 а в правой (также по часовой стрелке) — контурный ток I22. Для каждого контура составим уравнения по второму закону Кирхгофа. При этом учтем, что по смежной ветви (с сопротивлением R5) течет сверху вниз ток I11. — I22 Направления обхода контуров примем также по часовой стрелке. 

Для второго контура

В уравнении (б) множитель при токе I11, являющийся суммой сопротивлений первого контура, обозначим через R11, множитель при токе I22 (сопротивление смежной ветви, взятое со знаком минус) — через R12. Перепишем эти уравнения следующим образом:

Здесь

где R11 — полное или собственное сопротивление первого контура; R12 — сопротивление смежной ветви между первым и вторым контурами, взятое со знаком минус; E11 — контурная ЭДС первого контура, равная алгебраической сумме ЭДС этого контура (в нее со знаком плюс входят те ЭДС, направления которых совпадают с направлением обхода контура); R22 — полное или собственное сопротивление второго контура; R21 — сопротивление смежной ветви у между первым и вторым контурами, взятое со знаком минус; E22 — контурная ЭДС второго контура. В общем случае можно сказать, что сопротивление смежной ветви между K- и T-контурами (Rkm) входит в уравнение со знаком минус, если направления контурных токов Ikk и ITT вдоль этой ветви встречны, и со знаком плюс, если направления этих токов согласны. Если в схеме больше двух контуров, например три, то система уравнений выглядит следующим образом: 

или в матричной форме

Рекомендуется для единообразия в знаках сопротивлений с разными индексами все контурные токи направлять в одну и ту же сторону, например по часовой стрелке. В результате решения системы уравнений какой-либо один или несколько контурных токов могут оказаться отрицательными. В ветвях, не являющихся смежными между соседними контурами (например, в ветви с сопротивлениями R1R2 рис. 2.12), найденный контурный ток является действительным током ветви. В смежных ветвях через контурные токи определяют токи ветвей. Например, в ветви с сопротивлением R5 протекающий сверху вниз ток равен разности Ш11 —R22. Если в электрической цепи имеется п независимых контуров, то число уравнений тоже равно n. Общее решение системы n уравнений оносительно тока IKK

— определитель системы. Алгебраическое дополнение Δkm получено из определителя Δ путем вычеркивания K-го столбца и m-й строки и умножения полученного определителя на (—1)k + m. Если из левого верхнего угла определителя провести диагональ в его правый нижний угол (главная диагональ) и учесть, что Rkm = Rkmk, то можно убедиться в том, что определитель делится на две части, являющиеся зеркальным отображением одна другой. Это свойство определителя называют симметрией относительно главной диагонали.В силу симметрии определителя относительно главной диагонали Δkm = Δmk  Пример 13. Найти токи в схеме (рис. 2.13) методом контурных токов. Числовые значения сопротивлений в омах и ЭДС в вольтах указаны на рисунке. Решение. Выберем направления всех контурных токов I11I22 и I33 по часовой стрелке. Определяем: R11 = 5 + 5 + 4 = 14 Ом; R22 = 5 + 10 + 2 = 17 Ом;R33= 2+ + 2+ 1 =5 Ом;К12 = К21 = — 5 Ом; R13 = R31 = 0; R23 = R32 = - 2 Ом; E11 = -10 В; E33 = -8. 

Записываем систему уравнений:

определитель системы

подсчитаем контурные токи

Ток в ветви cm Icm = I11 - I22 = -0,634-0,224=-0,86 A. Ток в ветви am Iam = I22 - I33 = 0,224 + 1,51 = 1,734 A. Формула (2.5) в ряде параграфов используется в качестве исходной при рассмотрении таких важных вопросов теории линейных электрических цепей, как определение входных и взаимных проводимостей ветвей, принцип взаимности, метод наложения и линейные соотношения в электрических цепях. Составлению уравнений по методу контурных токов для схем с источниками тока присущи некоторые особенности. В этом случае полагаем, что каждая ветвь с источником тока входит в контур, замыкающийся через ветви с источниками ЭДС и сопротивлениями, и что токи в этих контурах известны и равны токам соответствующих источников тока. Уравнения составляют лишь для контуров с неизвестными контурными токами. Если для схемы рис. 2.14, а принять, что контурный ток I11 = J течет согласно направлению часовой стрелки по первой и второй ветвям, а контурный ток I22= I3 замыкается также по часовой стрелке по второй и третьей ветвям, то, согласно методу контурных токов, получим только одно уравнение с неизвестным током I22:(R2 + R3)I22 - R2I = E. Отсюда I22 =   и ток второй ветви I2 = I11 - I22/