Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИЛЕТЫ НА ЗАЧЕТ.doc
Скачиваний:
15
Добавлен:
17.09.2019
Размер:
321.02 Кб
Скачать

Основные требования к криптографическому закрытию информации в ас

  1. Сложность и стойкость криптографического закрытия данных должны выбираться в зависимости от объема и степени секретности данных.

  2. Надежность закрытия должна быть такой, чтобы секретность не нарушалась даже в том случае, когда злоумышленнику становится известен метод шифрования.

  3. Метод закрытия, набор используемых ключей и механизм их распределения не должны быть слишком сложными.

  4. Выполнение процедур прямого и обратного преобразований должно быть формальным. Эти процедуры не должны зависеть от длины сообщений.

  5. Ошибки, возникающие в процессе преобразования не должны распространяться по системе.

  6. Вносимая процедурами защиты избыточность должна быть минимальной.

Классификация основных методов криптографического закрытия информации

  1. Шифрование

    1. Подстановка (замена)

      1. Одноалфавитная

      2. Многоалфавитная одноконтурная обыкновенная

      3. Многоалфавитная одноконтурная монофоническая

      4. Многоалфавитная многоконтурная

    2. Перестановка

      1. Простая

      2. Усложненная по таблице

      3. Усложненная по маршрутам

    3. Гаммирование

      1. С конечной короткой гаммой

      2. С конечной длинной гаммой

      3. С бесконечной гаммой

    4. Аналитические преобразования

      1. Матричные

      2. По особым зависимостям

    5. Комбинированные

      1. Подстановка+перестановка

      2. Подстановка+гаммирование

      3. Перестановка+гаммирование

      4. Гаммирование+гаммирование

  2. Кодирование

    1. Смысловое

      1. По специальным таблицам

    2. Символьное

      1. По кодовому алфавиту

  3. Другие виды

    1. Рассечение-разнесение

      1. Смысловое

      2. Механическое

    2. Сжатие-расширение

Начиная разговор о шифровании, определимся с терминологией на примере фильма "Семнадцать мгновений весны": Юстас - зашифровывает, Алекс - расшифровывает, а старина Мюллер - дешифрует сообщение.

  1. Шифрование информации методом rsa.

Сначала необходимо вычислить пару ключей (секретный ключ и открытый ключ). Для этого отправитель (автор) электронных документов вычисляет два больших простых числа Р и Q, затем находит их произведение

N = Р * Q

и значение функции

 (N) = (Р-1)(Q-1).

Далее отправитель вычисляет число Е из условий:

Е  (N), НОД (Е,  (N)) = 1

и число D из условий:

D < N, Е*D  1 (mod  (N)).

Пара чисел (Е, N) является открытым ключом. Эту пару чисел автор передает партнерам по переписке для проверки его цифровых подписей. Число D сохраняется автором как секретный ключ для подписывания.

Обобщенная схема формирования и проверки цифровой подписи RSА показана на рис.6.

Рис.6. Обобщённая схема цифровой подписи RSA

Допустим, что отправитель хочет подписать сообщение М перед его отправкой. Сначала сообщение М (блок информации, файл, таблица) сжимают с помощью хэш-функции h(·) в целое число m:

m = h(М).

Затем вычисляют цифровую подпись S под электронным документом М, используя хэш-значение m и секретный ключ D:

S = mD (mod N).

Пара (М,S) передается партнеру-получателю как электронный документ М, подписанный цифровой подписью S, причем подпись S сформирована обладателем секретного ключа D.

После приема пары (М,S) получатель вычисляет хэш-значение сообидения М двумя разными способами. Прежде всего он восстанавливает хэш-значение m', применяя криптографическое преобразование подписи S с использованием открытого ключа Е:

m' = SE (mod N).

Кроме того, он находит результат хэширования принятого сообщения М с помощью такой же хэш-функции h(·):

m = h(М).

Если соблюдается равенство вычисленных значений, т.е.

SE ( mod N ) = h ( М ),

то получатель признает пару (М,S) подлинной. Доказано, что только обладатель секретного ключа D может сформировать цифровую подпись S по документу М, а определить секретное число D по открытому числу Е не легче, чем разложить модуль N на множители.

Кроме того, можно строго математически доказать, что результат проверки цифровой подписи S будет положительным только в том случае, если при вычислении S был использован секретный ключ D, соответствующий открытому ключу Е. Поэтому открытый ключ Е иногда называют "идентификатором" подписавшего.

Недостатки алгоритма цифровой подписи RSА.

  1. При вычислении модуля N, ключей Е и D для системы цифровой подписи RSА необходимо проверять большое количество дополнительных условий, что сделать практически трудно. Невыполнение любого из этих условий делает возможным фальсификацию цифровой подписи со стороны того, кто обнаружит такое невыполнение. При подписании важных документов нельзя допускать такую возможность даже теоретически.

  2. Для обеспечения криптостойкости цифровой подписи RSА по отношению к попыткам фальсификации на уровне, например, национального стандарта США на шифрование информации (алгоритм DES), т.е. 1018, необходимо использовать при вычислениях N, D и Е целые числа не менее 2512 (или около 10154) каждое, что требует больших вычислительных затрат, превышающих на 20...30% вычислительные затраты других алгоритмов цифровой подписи при сохранении того же уровня криптостойкости.

Цифровая подпись RSА уязвима к так называемой мультипликативной атаке. Иначе говоря, алгоритм цифровой подписи RSА позволяет злоумышленнику без знания секретного кпюча D сформировать подписи под теми документами, у которых результат хэширования можно вычислить как произведение результатов хэширования уже подписанных документов.