Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
12-20 КСЕ.docx
Скачиваний:
11
Добавлен:
17.09.2019
Размер:
79.64 Кб
Скачать

2.4. Элементы общей теории относительности

Благодаря специальной теории относительности в фи¬зике создается новый взгляд на характер физический, за¬конов, «наисовершеннейшим выражением которых счита¬ется теперь их инвариантное выражение». Несмотря на революционность специальной теории относительности, приведшей к коренному изменению наших представлений о пространстве и времени, тем не менее, возникает чувство некоторой незавершенности теории. И связано это с тем, что специальная теория относительности так же, как и классическая механика, сохраняет привилегированное по¬ложение наблюдателей, находящихся в инерциальных си¬стемах отсчета. А как быть с наблюдателями, находящи¬мися в системах отсчета, движущихся по отношению к первым с ускорением (в неинерциальных системах отсче¬та)? Чем объясняется неинвариантность законов физики в неинерциальных системах отсчета? Правомерно ли это? Подобное положение дел казалось неудовлетворительным. Эйнштейн, повторяя вопрос Э. Маха: «Почему инерциаль-ные системы физически выделены относительно других систем отсчета?», первым обращает внимание на то, что специальная теория относительности (СТО) не дает на него ответа. Следующая проблема возникла при попытке пред-ставить в рамках СТО тяготение. Оказалось, что тяготение укладывается в рамки специальной теории относительно¬сти только в том случае, если потенциал гравитационно¬го поля постоянен. Если же гравитационное поле перемен¬но, то глобальная лоренц-инвариантность, в основе которой лежит однородность всех точек пространства, не работает 2.

Эйнштейном была выяснена причина этого: она состо¬ит в том, что не только инертная масса зависит от энер¬гии, но и гравитационная. Галилеем был установлен закон, согласно которому все тела падают, при отсутствии сопро¬тивления среды, с одинаковым ускорением. Это является следствием равенства инертной и гравитационной (весо¬мой) массы. Равенство инертной и гравитационной массы соблюдается с точностью выше одной двадцатимиллионной, что было показано в серии весьма точных опытов, проде¬ланных Р. Этвешем. Тем не менее, это равенство не полу¬чило объяснения в физической теории. В 1908 году Эйн¬штейн доказывает, что каждому количеству энергии в гра-витационном поле соответствует энергия, по величине равная энергии инертной массы величиной Е/с2, и делает вывод о том, что закон этот выполняется не только для инертной, но и для гравитационной массы. Рассматривая факт равенства инертной и гравитационной массы, Эйн¬штейн приходит к выводу о том, что гравитационное поле (в котором проявляется гравитационная масса) эквива¬лентно ускоренному движению (в котором проявляется мас¬са инертная) и формулирует принцип эквивалентности, ко¬торый и был положен в основу создания общей теории от-носительности: «Факт равенства инертной и весомой массы или, иначе, тот факт, что ускорение свободного падения не зависит от природы падающего вещества, допускает и иное выражение. Его можно выразить так: в поле тяготения (малой пространственной протяженности) все происходит так, как в пространстве без тяготения, если в нем вместо «инерциальной» системы отсчета ввести систему, ускорен¬ную относительно нее».

Принцип эквивалентности Эйнштейн называл «счаст-ливейшей мыслью в моей жизни». Как уже отмечалось, попытки включения тяготения в специальную теорию от-носительности наталкивались на серьезные трудности, так как в этом случае не работает глобальная лоренц-инвари-антность. Эйнштейн приходит к выводу о том, что главная задача состоит не в том, как включить тяготение в СТО, а в том, как использовать тяготение для обобщения требо¬вания инвариантности к любым типам движения, в том числе и ускоренным. Оказалось, что тяготение не может быть полностью заменено ускорением (гравитационные силы — силами инерции) в больших областях с неоднород¬ным гравитационным полем. Сведение гравитационного поля к ускоренным системам отсчета требует ограничения принципа эквивалентности бесконечно малыми масштаба¬ми. Иными словами, принцип эквивалентности имеет ло¬кальное значение. Локальный характер принципа эквива¬лентности приводит к представлениям о мире, отличном от плоского евклидова пространства, для которого сумма углов треугольника всегда равно 180 градусов. Это мир — с кри¬визной пространственно-временного континуума. Случи¬лось так, что в математике уже были развиты теории неев¬клидовой дифференциальной геометрии — теория Лобачев¬ского и теория Римана. В общей теории относительности инвариантность физических законов в системах отсчета, в которых действуют гравитационные силы (или которые яв¬ляются неинерциальными), достигается относительно ло-кальных преобразований в римановом четырехмерном про¬странстве-времени положительной кривизны. Иными слова¬ми, гравитационное поле может интерпретироваться как следствие искривления пространства.

Итак, в результате восьмилетних размышлений над природой тяготения (с 1907 по 1915 год) Эйнштейн в по¬лемике и при поддержке ряда крупных физиков и матема¬тиков пришел к созданию общей теории относительнос¬ти — теории, распространяющей принцип относительности на любые системы отсчета и в то же время представляю¬щей из себя более общую теорию тяготения, содержащую в себе теорию тяготения Ньютона как предельный случай.

Специальная теория относительности имеет глубокое экспериментальное подтверждение и является мощным аппаратом в ядерной физике и физике элементарных ча¬стиц. Следует отметить существовавший в ряду физиков скепсис по поводу возможной экспериментальной проверя¬емости общей теории относительности, который, однако, просуществовал недолго. Первое экспериментальное под¬тверждение теории состояло в объяснении аномального движения планеты Меркурий, чего не удавалось сделать на основе теории Ньютона. Меркурий — это наиболее близкая к Солнцу планета- Согласно общей теории относительно¬сти, эллиптическая траектория движения планет должна медленно поворачиваться вокруг Солнца. Леверрье было открыто вековое вращение орбиты Меркурия, составляю¬щее около 45" в столетие (ясно, что для остальных пла¬нет оно еще меньшее). Результат этот не согласовывался с расчетами, полученными на основе ньютоновского зако¬на всемирного тяготения. Результаты расчета по общей теории относительности продемонстрировали полное совпа¬дение с данными астрономических наблюдений. Далее, след¬ствием теории является более сильное (в два раза большее) искривление светового луча гравитационным полем, неже¬ли это было получено из опытов, проведенных Зольденером в 1804 году. Экспедиции, наблюдавшие солнечные затмения 29 мая в 1919 году и 21 сентября 1921 года обнаружили, что искривление света близко к значению, предсказываемо¬му общей теории относительности. И, наконец, третий экс¬периментальный результат не только соответствовал тео¬рии, но и дал мощный импульс для развития на базе об¬щей теории относительности науки о происхождении и эволюции Вселенной — космологии. Речь идет об откры¬тии в 1929 году Хабблом смещения спектральных линий излучения звезд в сторону красного света, так называемое «красное смещение», свидетельствующее о том, что Вселен¬ная, в которой мы обитаем, не статична, а расширяется, так что всевозможные галактики разбегаются. Несколько ра-нее, в 1922-1924 годах, А. Фридманом были получены решения общей теории относительности для нестационар¬ной Вселенной, расширяющейся в настоящую эпоху, что и было экспериментально подтверждено открытием Хаббла. Современные космологические модели еще более разви¬вают представления о пространстве-времени нашей Вселен-ной. Здесь ставятся вопросы о том, почему пространство мира, в котором мы живем, трехмерно? Возможна ли жизнь нашего типа в пространстве с большим числом измерений? Что представляет собой пространство в масштабах порядка 10-33 см? Каковы его метрика и топология? Как связаны между собой известные типы физических взаимодействий и пространственно-временная структура нашей Вселенной? Эти и другие вопросы будут рассмотрены в следующих гла¬вах этой книги. Ведь, по существу, вопрос о пространстве и времени известного мира — это вопрос всей современной науки. Вот почему он не укладывается в размер одной гла¬вы, а требует ознакомления с другими важными разделами физики.

В настоящей главе часто упоминается понятие «энергия». Поэтому мы позволим себе перелистать странички истории назад и рассмотреть, как это фундаментальное понятие вошло в структуру физической науки, чему и посвящена следующая глава книги.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]