Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biologia.docx
Скачиваний:
4
Добавлен:
15.09.2019
Размер:
92.73 Кб
Скачать

Специфика растительного строения клетки:

Растительная клетка как клетка эукариотического организма состоит из плазматической мембраны, цитоплазмы с органеллами и ядра. В то же время, в отличие от других эукариотических организмов, в растительной клетке есть полисахаридная клеточная стенка, пластиды и центральная вакуоль. Цитоскелет- внутренний скелет цитоплазмы.

Пластиды – особые органоиды растительных клеток, в которых осуществляется синтез различных веществ, и в первую очередь фотосинтез. В цитоплазме клеток высших растений имеется три основных типа пластид: 1) зеленые пластиды – хлоропласты; 2) окрашенные в красный, оранжевый и другие цвета хромопласты; 3) бесцветные пластиды – лейкопласты. Все эти типы пластид могут переходить один в другой.

Вакуоль — одномембранный органоид, содержащийся в некоторых эукариотических клетках и выполняющий различные функции (секреция, экскреция и хранение запасных веществ, аутофагия, автолиз и др.). Вакуоли и их содержимое рассматриваются как обособленный от цитоплазмы компартмент. Различают пищеварительные и сократительные (пульсирующие) вакуоли, регулирующие осмотическое давление и служащие для выведения из организма продуктов распада. Вакуоли особенно хорошо заметны в клетках растений: во многих зрелых клетках растений они составляют более половины объёма клетки.

Вакуоль — это место запаса воды. Вакуоли развиваются из цистерн эндоплазматической сети. Мембрана, в которую заключена вакуоль, называется тонопласт.

В вакуолях содержатся органические кислоты, углеводы, дубильные вещества, неорганические вещества (нитраты, фосфаты, хлориды и др.), белки и др.

Билет №7. Экзергонические и эндергонические процессы в клетке. Метаболизм (катаболизм и анаболизм). Транспорт энергии АТФ – АДФ

Экзергонический - Самопроизвольно протекающий процесс, сопровождающийся уменьшением свободной энергии системы. В живых системах экзергонические процессы сопряжены с эндергоническими. В частности, процессы катаболизма (распад или окисление молекул) обычно являются экзергоническими процессами, а процессы анаболизма - эндергоническими процессами. Таким образом метаболизм есть совокупность взаимодействующих экзергонических и эндергонических процессов. Экзергонические процессы передают свободную энергию для осуществления эндергонических процессов (синтез, активный транспорт, неспецифические эффекты возбуждения, специфические эффекты возбуждения и др.) посредством общего высокоэнергетического соединения. В живых клетках главным таким высокоэнергетическим продуктом является аденозинтрифосфат (АТФ).

Метаболизм - это cовокупность ферментативных реакций, протекающих на уровне органов, тканей, клеток и субклеточных структур (митохондрии, цитозоль, эндоплазматический ретикулум и др.).

Вещества, участвующие в метаболизме называют метаболитами.

Реакции метаболизма можно разделить на три категории.

(а) Катаболизм - окислительные процессы (расщепление сложных соединений), поставляющие свободную энергию и запасающие её в форме высокоэнергетических фосфатов (P) или восстановительных эквивалентов (2Н). Примерами реакций катаболизма являются реакции ферментативного гидролиза пищевых веществ в системе пищеварения, дыхательная цепь и окислительное фосфорилирование.

(б) Анаболизм - процессы синтеза (создание новых структур и взаимопревращения) различных биохимических структур организма (например синтез белка), обеспечивающих его функции. Свободная энергия, необходимая для процессов анаболизма обеспечивается реакциями катаболизма.

(в) Некоторые реакции метаболизма занимают промежуточное положение (амфиболические реакции), связывая реакции анаболизма и катаболизма (пример - цикл лимонной кислоты).

Эндергонический - Процесс, протекающий в системе только при поступлении свободной энергии извне. В живых системах эндергонические процессы сопряжены с экзергоническими. В частности, процессы катаболизма (распад или окисление молекул) обычно являются экзергоническими процессами, а процессы анаболизма - эндергоническими процессами. Таким образом метаболизм есть совокупность взаимодействующих экзергонических и эндергонических процессов. Экзергонические процессы передают свободную энергию для осуществления эндергонических процессов (синтез, активный транспорт, неспецифические эффекты возбуждения, специфические эффекты возбуждения и др.) посредством общеговысокоэнергетического соединения. В живых клетках главным таким высокоэнергетическим продуктом являетсяаденозинтрифосфат (АТФ).

Билет №8. Понятие о фотосинтезе. Световая и темновая фаза. Субстраты и продукты реакций. Глобально-экологическое значение фотосинтеза.

Фотосинтез - процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

Световая (светозависимая) стадия - В ходе световой стадии фотосинтеза образуются высокоэнергетические продукты: АТФ, служащий в клетке источником энергии, и НАДФН, использующийся как восстановитель. В качестве побочного продукта выделяется кислород. В общем, роль световых реакций фотосинтеза заключается в том, что в световую фазу синтезируются молекула АТФ и молекулы-переносчики протонов, то есть НАДФ Н2.

Темновая стадия - В темновой стадии с участием АТФ и НАДФН происходит восстановление CO2 до глюкозы (C6H12O6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

*НАДФ - Никотинамидадениндинуклеотидфосфа́т (НАДФ, NADP) — широко распространённый в природе кофермент некоторых дегидрогеназ — ферментов, катализирующих окислительно-восстановительные реакции в живых клетках. NADP принимает на себя водород и электроны окисляемого соединения и передаёт их на другие вещества. В хлоропластах растительных клеток NADP восстанавливается при световых реакциях фотосинтеза и затем обеспечивает водородом синтез углеводов при темновых реакциях. NADP, — кофермент, отличающийся от NAD содержанием ещё одного остатка фосфорной кислоты, присоединённого к гидроксилу одного из остатков D-рибозы, обнаружен во всех типах клеток.

Значение фотосинтеза - Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия, получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф), также является запасённой в процессе фотосинтеза.

Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь свободный кислород атмосферы — биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу.

Билет №9. Питание. Классификация организмов по способам утилизации углерода и энергии. Автотрофы и гетеротрофы, фототрофы и хемотрофы.

Питание – поглощение клеткой вещества и энергии. По типу питания делятся на:

- Автотрофов – (способны окислять из неорганических веществ органические). Организмы, синтезирующие органические соединения из неорганических. Автотрофы составляют первый ярус в пищевой пирамиде (первые звенья пищевых цепей). Именно они являются первичными продуцентами органического вещества в биосфере, обеспечивая пищей гетеротрофов. Следует отметить, что иногда резкой границы между автотрофами и гетеротрофами провести не удаётся. Например, одноклеточная эвглена на свету является автотрофом, а в темноте — гетеротрофом.

Автотрофные организмы для построения своего тела используют неорганические вещества почвы, воды, воздуха. При этом почти всегда источником углерода является углекислый газ.

- Гетеротрофов - (окисляют только готовые органические вещества). Организмы, которые не способны синтезировать органические вещества из неорганических путём фотосинтеза или хемосинтеза. Для синтеза необходимых для своей жизнедеятельности органических веществ им требуются экзогенные органические вещества, т. е. произведённые другими организмами. В процессе пищеварения пищеварительные ферменты расщепляют полимеры органических веществ на мономеры. В сообществах гетеротрофы — это консументы различных порядков и редуценты. Гетеротрофами являются почти все животные и некоторые растения. По способу получения пищи делятся на две противопостовляемых группы: голозойных (животные) и голофитных или осмотрофных (бактерии, многие протисты, грибы, растения).Растения-гетеротрофы полностью (заразиха, раффлезия) или почти полностью (повилика) лишены хлорофилла и питаются, прорастая в тело растения-хозяина.К животным-гетеротрофам относятся все простейшие, не способные синтезировать органические вещества фото- или хемосинтезом. Однако существуют животные, способные в разных условиях питаться разными способами (эвглена зелёная).

Граница между автотрофами и гетеротрофами достаточно условна, так как существует множество видов, обладающих переходной формой питания — миксотрофией, либо использующие наиболее удобный в данных условиях тип питания.

- Фототрофов – (в качестве энергии используют энергию солнца). Организмы, для которых источником энергии служит солнечный свет (фотоны, благодаря которым появляются доноры — источники электронов), называются фототрофами. Такой тип питания носит название фотосинтеза. К фотосинтезу способны зелёные растения и многоклеточные водоросли, а также цианобактерии и многие другие группы бактерий благодаря содержащемуся в их клетках пигменту — хлорофиллу. Археи из группы галобактерий способны к бесхлорофилльному фотосинтезу, при котором энергию света улавливает и преобразует белок бактериородопсин.

- Хемотрофов – (используют энергию, освободившуюся в результате окислительно -восстановительных реакций). Остальные организмы в качестве внешнего источника энергии (доноров — источников электронов) используют энергию химических связей пищи или восстановленных неорганических соединений — таких, как сероводород, метан, сера, двухвалентное железо и др. Такие организмы называются хемотрофы. Все фототрофы-эукариоты одновременно являются автотрофами, а все хемотрофы-эукариоты — гетеротрофами. Среди прокариот встречаются и другие комбинации. Так, существуют хемоавтотрофные бактерии, а некоторые фототрофные бактерии также могут использовать гетеротрофный тип питания, т. е. являются миксотрофами.

Билет №10. Генетический код. Процессы транскрипции и трансляции. Ген. Его структура и регуляция его активности. Экспрессия генов.

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Трансляцией (от лат. translatio — перевод) называют осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК).

Транскри́пция (от лат. transcriptio — переписывание) — процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Ген — структурная и функциональная единица наследственности, контролирующая развитие определённого признака или свойства.

Экспрессия генов - это факторы воздействующие на регулятор гена. Это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт — РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.

Регуляция экспрессии генов позволяет клеткам контролировать собственную структуру и функцию и является основой дифференцировки клеток, морфогенеза и адаптации. Экспрессия генов является субстратом для эволюционных изменений, так как контроль за временем, местом и количественными характеристиками экспрессии одного гена может иметь влияние на функции других генов в целом организме.

Билет №11. Жизненный цикл соматических клеток. Интерфаза и её этапы. Митоз и его фазы. Биологическое значение митоза. Бесполое размножение организмов.

Клеточный цикл - это период жизни клетки от момента её образования путем деления материнской клетки до собственного деления или смерти.Клеточный цикл состоит из двух периодов:

  1. интерфаза (состояние, когда клетка НЕ делится);

  2. деление (митоз или мейоз).

Интерфаза состоит из нескольких фаз:

- пресинтетическая: клетка растет, в ней происходит активный синтез РНК и белков, увеличивается количество органоидов; кроме этого, происходит подготовка к удвоению ДНК (накопление нуклеотидов)

синтетическая: происходит удвоение (репликация, редупликация) ДНК

- постсинтетическая: клетка готовится к делению, синтезирует необходимые для деления вещества, например белки веретена деления.

Митоз – это деление соматических клеток (клеток тела).

Биологическое значение митоза – размножение соматических клеток, получение клеток-копий (с тем же самым набором хромосом, с точно такой же наследственной информацией). Все соматические клетки организма получаются из одной исходной клетки (зиготы) путем митоза. Фазы митоза:

1) Профаза

хроматин спирализуется (скручивается, конденсируется) до состояния хромосом

ядрышки исчезают

ядерная оболочка распадается

центриоли расходятся к полюсам клетки, в цитоплазме начинается формирование веретена деления

2) Метафаза – заканчивается формирование веретена деления: хромосомы выстраиваются по экватору клетки, образуется метафазная пластинка

3) Анфаза – дочерние хромосомы отделяются друг от друга (хроматиды становятся хромосомами) и расходятся к полюсам

4) Телофаза - хромосомы деспирализуются (раскручтваются, деконденсируются) до состояния хроматина

появляются ядро и ядрышки, нити веретена деления разрушаются, происходит цитокинез – разделение цитоплазмы материнской клетки на две дочерних.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]