Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Трансформатор.doc
Скачиваний:
5
Добавлен:
04.09.2019
Размер:
93.18 Кб
Скачать

Режим холостого хода

Когда вторичные обмотки ни к чему не подключены (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью[11] компенсирует напряжение источника питания, поэтому ток протекающий через первичную обмотку невелик. Для трансформатора с сердечником из магнитомягкого материала (например, ферромагнитного материала, например, из трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода. Мощность потерь можно вычислить, умножив активную составляющую тока холостого хода на напряжение, подаваемое на трансформатор.

Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивности первичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности.

Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея

Режим короткого замыкания

В режиме короткого замыкания, на первичную обмотку трансформатора подается переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчетному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить умножив напряжение короткого замыкания на ток короткого замыкания.

Данный режим широко используется в измерительных трансформаторах тока.

Режим с нагрузкой

При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.

Схематично, процесс преобразования можно изобразить следующим образом:

Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведённая во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке.

Теория трансформаторов

Уравнения линейного трансформатора.

Пусть i1, i2 — мгновенные значения тока в первичной и вторичной обмотке соответственно, u1 — мгновенное напряжение на первичной обмотке, RH — сопротивление нагрузки. Тогда

Здесь L1, R1— индуктивность и активное сопротивление первичной обмотки, L2, R2— то же самое для вторичной обмотки, L12— взаимная индуктивность обмоток. Если магнитный поток первичной обмотки полностью пронизывает вторичную, то есть если отсутствует поле рассеяния, то . Индуктивности обмоток в первом приближении пропорциональны квадрату количества витков в них.

Мы получили систему линейных дифференциальных уравнений для токов в обмотках. Можно преобразовать эти дифференциальные уравнения в обычные алгебраические, если воспользоваться методом комплексных амплитуд.

Для этого рассмотрим отклик системы на синусоидальный сигнал u1=U1 e-jω t (ω=2π f, где f — частота сигнала, j — мнимая единица). Тогда i1=I1 e-jω t и т. д., сокращая экспоненциальные множители получим

U1=-jωL1 I1 -jωL12 I2+I1 R1

-jωL2 I2 -jω L12 I1+I2 R2 =-I2 Zн

Метод комплексных амплитуд позволяет исследовать не только чисто активную, но и произвольную нагрузку, при этом достаточно заменить сопротивление нагрузки Rн её импедансом Zн. Из полученных линейных уравнений можно легко выразить ток через нагрузку, воспользовавшись законом Ома— напряжение на нагрузке, и т. п.

Т-образная схема замещения трансформатора.

На рисунке показана эквивалентная схема трансформатора с подключенной нагрузкой, как он видится со стороны первичной обмотки.

Здесь T — коэффициент трансформации, L12 — «полезная» индуктивность первичной обмотки, L1п, L2п — индуктивности первичной и вторичной обмотки, связанные с рассеянием,R1п, R2п — активные сопротивления первичной и вторичной обмотки соответственно, Zн — импеданс нагрузки.

Потери в трансформаторах

Степень потерь (и снижения КПД) в трансформаторе зависит, главным образом, от качества, конструкции и материала «трансформаторного железа» (электротехническая сталь). Потери в стали состоят в основном из потерь на нагрев сердечника, на гистерезис и вихревые токи. Потери в трансформаторе, где «железо» монолитное, значительно больше, чем в трансформаторе, где оно составлено из многих секций (так как в этом случае уменьшается количество вихревых токов). На практике монолитные сердечники не применяются. Для снижения потерь в магнитопроводе трансформатора магнитопровод может изготавливаться из специальных сортов трансформаторной стали с добавлением кремния, который повышает удельное сопротивление железа электрическому току, а сами пластины лакируются для изоляции друг от друга.