Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
радар.doc
Скачиваний:
6
Добавлен:
04.09.2019
Размер:
289.79 Кб
Скачать

Устранение пассивных помех

Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов: земной поверхности, высоких холмов и т. п. Если к примеру, самолёт находится на фоне высокого холма, отражённый сигнал от этого холма полностью перекроет сигнал от самолёта. Для наземных РЛС эта проблема проявляется при работе с низколетящими объектами. Для бортовых импульсных РЛС она выражается в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолёта с радиолокатором.

Методы устранения помех используют, так или иначе, эффект Доплера (частота волны, отражённой от приближающегося объекта, увеличивается, от уходящего объекта — уменьшается).

Самый простой радар, который может обнаружить цель в помехах — радар с селекцией движущихся целей (СДЦ) — импульсный радар, который сравнивает отражения более чем от двух или больше интервалов повторения импульса. Любая цель, которая, движется относительно радара, производит изменение в параметре сигнала (стадия в последовательном СДЦ), тогда как помехи остаются неизменными. Устранение помех происходит путём вычитания отражений из двух последовательных интервалов. На практике устранение помех может быть осуществлено в специальных устройствах — черезпериодных компенсаторах или алгоритмами в программном обеспечении.

СДЦ, работающие с постоянной частотой повторения импульсов, имеют фундаментальную слабость: они являются слепыми к целям со специфическими круговыми скоростями (которые производят изменения фаз точно в 360 градусов), и такие цели не отображаются. Скорость, при которой цель исчезает для радиолокатора, зависит от рабочей частоты станции и от частоты повторения импульсов. Современные СДЦ излучают несколько импульсов с различной частоты повторения — такой, что невидимые скорости в каждой частоте повторения импульсов охвачены другими ЧПИ.

Другой способ избавления от помех реализован в импульсно-доплеровских РЛС, которые используют существенно более сложную обработку чем РЛС с СДЦ.

Важное свойство импульсно-доплеровских РЛС — это когерентность сигнала. Это значит, что посланные сигналы и отражения должны иметь определённую фазовую зависимость.

Импульсно-доплеровские РЛС обычно считаются лучше РЛС с СДЦ при обнаружении низколетящих целей во множественных помехах земли, это — предпочтительная техника, используемая в современном истребителе, для воздушного перехвата/управления огнём (примеры тому AN/APG-63, 65, 66, 67 и 70 радары). В современном доплеровском радаре большинство обработки выполняется отдельным процессором в цифровом виде с помощью цифровых сигнальных процессоров, обычно используя высокопроизводительный алгоритм Быстрое преобразование Фурье для преобразования цифровых данных образцов отражений кое во что более управляемое другими алгоритмами. Цифровые обработчики сигналов очень гибки, поскольку используемые в них алгоритмы могут оперативно заменяться другими, изменением только программы в памяти устройства («прошивку» ПЗУ), таким образом, в случае необходимости, быстро приспосабливаясь к технике глушения противника.

Диапазоны РЛС

Частотные диапазоны РЛС американского стандарта IEEE

Диапазон

Этимология

Частоты

Длина волны

Примечания

HF

англ. high frequency

3—30 МГц

10—100 м

Радары береговой охраны, «загоризонтные» РЛС

P

англ. previous

< 300 МГц

> 1 м

Использовался в первых радарах

VHF

англ. very high frequency

50—330 МГц

0,9—6 м

Обнаружение на больших дальностях, исследования Земли

UHF

англ. ultra high frequency

300—1000 MHz

0,3—1 м

Обнаружение на больших дальностях (например, артиллерийского обстрела), исследования лесов, поверхности Земли

L

англ. Long

1—2 ГГц

15—30 см

наблюдение и контроль за воздушным движением

S

англ. Short

2—4 ГГц

7,5—15 см

управление воздушным движением, метеорология, морские радары

C

англ. Compromise

4—8 ГГц

3,75—7,5 см

метеорология, спутниковое вещание, промежуточный диапазон между X и S

X

8—12 ГГц

2,5—3,75 см

управление оружием, наведение ракет, морские радары, погода, картографирование среднего разрешения; в США диапазон 10,525 ГГц ± 25 МГц используется в РЛС аэропортов

Ku

англ. under K

12—18 ГГц

1,67—2,5 см

картографирование высокого разрешения, спутниковая альтиметрия

K

нем. kurz — «короткий»

18—27 ГГц

1,11—1,67 см

использование ограничено из-за сильного поглощения водяным паром, поэтому используются диапазоны Ku и Ka. Диапазон K используется для обнаружения облаков, в полицейских дорожных радарах (24,150 ± 0,100 ГГц).

Ka

англ. above K

27—40 ГГц

0,75—1,11 см

Картографирование, управление воздушным движением на коротких дистанциях, специальные радары, управляющие дорожными фотокамерами (34,300 ± 0,100 ГГц)

mm

40—300 ГГц

1—7,5 мм

миллиметровые волны, делятся на два следующих диапазона

V

40—75 ГГц

4,0—7,5 мм

медицинские аппараты КВЧ, применяемые для физиотерапии, а также аппараты для диагностики (например, по методу Фолля)

W

75—110 ГГц

2,7—4,0 мм

сенсоры в экспериментальных автоматических транспортных средствах, высокоточные исследования погодных явлений