Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УПЛА-6.doc
Скачиваний:
60
Добавлен:
02.09.2019
Размер:
1.48 Mб
Скачать

§ 1.4. Прямоточные воздушно-реактивные двигатели.

Наиболее простым по схеме и устройству типом воздушно-реактивных двигателей, в котором вместе с тем ясно видны общие принципиальные особенности подобных двигателей, является прямоточный воздушно-реактивный двигатель (ПВРД).

Любой реактивный двигатель должен выполнять две функции:

1) развивать работу за счет тепла, выделяющегося при сжигании топлива, и

2) использовать эту работу для разгона газов в двигателе.

При этом для преобразования тепла в работу рабочий процесс двигателя должен реализовывать термодинамический цикл с сообщением газам тепла при повышенном давлении и их последующим расширением. Необходимые для этого элементы устройства ПВРД для дозвуковых и примерное изменение по тракту двигателя основных параметров потока – скорости с, давления р и температуры Т – показаны на рисунке.

Принципиальная схема дозвукового прямоточного воздушно-реактивного двигателя.

Ф – форсунка впрыска топлива

Как видно, двигатель состоит из трех основных частей:

  • входное устройство – диффузор (Н' - В),

  • камера сгорания (В - Г),

  • выходное сопло (Г - С).

В диффузоре происходит уменьшение скорости воздуха, которое обычно начинается до поступления его в двигатель (участок Н - Н’). В результате на участке Н - Н’ - В снижается скорость с, и теряемая кинетическая энергия в основном используется на работу сжатия этого же воздуха, причем р и Т воздуха повышаются.

В камере сгорания температура T возрастает, а уменьшение плотности газов приводит к увеличению скорости с. По этой же причине, а также из-за гидравлических потерь р несколько падает.

В выходном сопле вследствие уменьшения р газы, расширяясь, совершают работу, идущую в основном на увеличение их кинетической энергии. Снижение температуры Т происходит из-за контакта газового потока с окружающей средой.

Поскольку расширение газов происходит при более высоком уровне температур чем сжатие, то увеличение их кинетической энергии превышает уменьшение ее при сжатии. В результате кинетическая энергия потока возрастает и получаемое приращение скорости обусловливает создание двигателем тяги.

Тракт двигателя представляет собой спрофилированный открытый трубчатообразный канал, через который непрерывно течет поток газов. Получение в таком канале перепадов давлений возможно лишь за счет использования газодинамических сил, т. е. сил инерции газов, возникающих при изменении величины или направления скорости газового потока.

Таким образом, в ПВРД процессы сжатия и расширения осуществляются газодинамическими методами, тогда как в поршневом двигателе эти процессы получаются путем изменения объема неизменного количества заключенного в цилиндре почти неподвижного газа, т. е. объемным способом. Поэтому в отличие от поршневого двигателя рабочий процесс ПВРД может быть эффективным лишь при достаточно высоких скоростях потока, когда возможно иметь большие газодинамические силы.

Протекание рабочего процесса в непрерывно движущемся высокоскоростном потоке и относительно широкие проходные сечения тракта делают возможным получение в ПВРД расходов воздуха, в сотни раз больше достигнутых в поршневых двигателях. Это позволяет сжигать много топлива и тем самым иметь большое количество тепла для преобразования его в работу.

Однако при дозвуковых скоростях полета располагаемая кинетическая энергия поступающего воздуха способна повысить его давление не более чем в 1,6 – 1,75 раза, что обеспечивает преобразование в работу только 8 – 10% располагаемого тепла. Поэтому дозвуковые ПВРД малоэкономичны и развивают небольшие тяги по отношению к имеющемуся расходу воздуха. Для получения достаточной эффективности рабочего процесса необходимо иметь большее повышение давления при сжатии (не ниже чем в 4–6 раз) и, следовательно, сверхзвуковые скорости полета . Схема применяемых при этих скоростях так называемых сверхзвуковых ПВРД (СПВРД) показана на рисунке.