Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекції з Фізики сонячних елементів.doc
Скачиваний:
4
Добавлен:
02.09.2019
Размер:
993.28 Кб
Скачать

1.5 Генерація і рекомбінація носіїв в області об’ємного заряду

Область об’ємного заряду в більшості випадків менша дифузійної довжини. Процеси генерації і рекомбінації в цій області проходять більш інтенсивно, ніж в однорідному напівпровіднику. Туму складові струму напівпровідникового діода за рахунок генерації і рекомбінації носіїв в області об’ємного заряду можуть бути значними.

Для кількісного визначення струму, обумовленого генерацією і рекомбіна-цією носіїв. Скористаємося відношенням для числа пар носіїв, які генеруються (рекомбінують) за одиницю часу в одиниці об’єму напівпровідника, якщо обмін електронами між зонами проходить через рекомбінаційні пастки одного типу:

. (1.73)

Тут р1, n1 – концентрації носіїв в зонах, коли рівень Фермі проходить через рі-вень пасток; τn0, τр0 – часи життя неосновних носіїв в досить сильному напів-провіднику.

Проведемо розрахунок для двох випадків – зворотної і прямої напруги на переході. Приймемо, що рівні пасток знаходяться по середині забороненої зони, тобто n11=nі.

Зворотна напруга. При зворотних напругах на переході всі носії заряду виносяться із нього електричним полем. Тому можна вважати, що р=0 і n=0. Тоді

. (1.74)

Отримана величина позитивна; це означає, що в області об’ємного заряду йде процес генерації носіїв. Крім того, таке значення більше, ніж може бути в одному матеріалі. Дійсно, мінімальне значення концентрації носіїв в напівпровіднику рівне нулю. Тоді для однорідного напівпровідника при р=0 і n=nn0

. (1.75)

Так як концентрація неосновних носіїв завжди помітно менша власної концентрації, значення для області об’ємного заряду (1.74) набагато більше, ніж для однорідного напівпровідника (1.75). Фізично це пояснюється тим, що в однорідному напівпровіднику генерація носіїв в значній мірі зрівноважується їх рекомбінацією, в той час як в області об’ємного заряду обидва носії із утвореної пари одразу розділяються і ймовірність наступної рекомбінації дуже мала.

Генераційний струм через електронно-дірковий перехід визначається числом носіїв, які пройшли за одиницю часу його границю, або числом утворених пар. Значення густини генераційного струму

. (1.76)

Можна співставити отримане значення генераційного струму із розрахо-ваним раніш дифузійним струмом. Порівняємо несиметричні діоди з товстою базою n-типу. В цьому випадку

; (1.77)

чи

, (1.78)

де N – концентрація домішок в базі.

Припустивши, що τр0n0p, отримаємо

. (1.79)

Таким чином, частина генераційного струму обернено пропорційна власній концентрації. Звідси випливає, що процеси генерації в області об’ємного заряду більш суттєві для діодів, виготовлених із напівпровідників з більшою шириною забороненої зони, тому що для них nі менше. Так, для германієвих діодів генераційний струм при кімнатній температурі порядку 0.1 від дифузійного, а для кремнієвих діодів, хоча генераційний струм менший, він може перевищувати Інас на 2 – 3 порядки.

Співвідношення між генераційним і дифузійним струмами змінюється також при зміні температури – з підвищенням температури обидва струми зростають, але дифузійний струм росте швидше (як ), а генераційний тільки як . Тобто, з підвищенням температури відносна роль генераційного струму падає.

Пряма напруга. При прямих напругах носії заряду входять в область об’ємного заряду електронно-діркового переходу і там може проходити їх рекомбінація. Кількість носіїв в різних точках переходу різна, тому і швидкість рекомбінації залежить від координати. Це створює труднощі при розрахунку рекомбінаційного струму. Для спрощення припустимо, що електронно-дірковий перехід строго симетричний. Тоді в центрі переходу концентрації носіїв в умовах рівноваги будуть рівні – р=n=nі і при подачі зовнішньої напруги U можна записати

. (1.80)

Підставивши значення (1.80) в формулу (1.73) при вибраних раніш умовах, отримаємо

. (1.81)

Прийнявши це значення для всієї області об’ємного заряду, можна записати абсолютну величину густини рекомбінаційного струму у вигляді

. (1.82)

Поданий розрахунок визначає тільки загальний характер залежності, так як в ньому не враховано зміни по координаті. Більш строгі розрахунки дають . (1.83)

Як і при розрахунку генераційного струму, можна показати, що рекомбінація в області об’ємного заряду більш суттєва для діодів, які виготовлені із напівпровідників з більшою шириною забороненої області. Наприклад, в напівпровідникових діодах із кремнію вона грає велику роль, ніж в германієвих, особливо при низьких температурах. В напівпровідникових діодах, виготовлених із матеріалів з великою шириною забороненої зони і малим часом життя носіїв (наприклад, карбід кремнію), прямий струм майже повністю визначається рекомбінацією носіїв в області об’ємного заряду.

Необхідно відмітити, що рекомбінаційна складова струму залежить від напруги як , а складова дифузійного струму як . Не дивлячись на те, що рекомбінаційна складова струму з ростом напруги зростає, відносна роль її в загальному струмі діоду зменшується.

Вольт-амперна характеристика з врахуванням дифузійних і генераційно-рекомбінаційних струмів (рис. 1.8) говорить про те, що наявність генерації і рекомбінації збільшує струми напівпровідникового діоду. В результаті зміни товщини області об’ємного заряду σ із зміною напруги зворотній струм стає насиченим.

1

2

.8 Вольт-амперні характеристики напівпровідникового діоду:

1 – без врахування генерації і рекомбінації в області об’ємного заряду;

2 – з врахуванням генерації і рекомбінації

1

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]