Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Жуковский - радиоприемные устройства.docx
Скачиваний:
241
Добавлен:
01.09.2019
Размер:
2.72 Mб
Скачать

§ 5.3. Преобразователи частоты на полевых и биполярных транзисторах

Транзисторы могут использоват ся в качестве преобразовательнь элементов на тех же частотах сигнал что и в качестве усилителей. О, нако наиболее эффективно они раб тают на частотах, на которых ец не проявляет себя комплексный х рактер крутизны. В этих случаях ним применимы все выводы и формул общей теории преобразования част ты.

В однозатворных полевых транз] сторах напряжения сигнала и гет родина прикладываются между за вором и истоком, а фильтр промеж; точной частоты включается в цег стока. Таким образом, для расчет крутизны преобразования необх( димо знать зависимость крутизн S = d/c/d«3„ от напряжения на пр< межутке затвор—исток. Эта завис! мость может быть получена диффере] цированием сток-затворной характ ристики транзистора (/с зя). П( скольку эта характеристика имес обычно вид квадратичной параболь зависимость S = S (и3„) = S(u оказывается линейной (рис. 5.4) для расчета крутизны преобразов; ния следует найти коэффициенты ра: ложения в ряд Фурье косинусоидал] ных импульсов крутизны. Это npi

водит к следующим выражениям для

5„ и S0:

Анализ формулы (5.26) показывает, что для каждого значения п существует оптимальный угол отсечки вор1, максимизирующий крутизну преобразования. Крутизна преобразования падает с ростом п, поэтому всегда выгодно использовать преобразование на основной частоте гетеродина (« = 1).

Для ослабления влияния паразитных каналов приема при п = 1 целесообразно выбирать в = 180° (хотя угол 9opt при п = 1 равен 120е).' При этом не возникает гармоник частоты гетеродина, а следовательно, и

множества паразитных каналов. Остаются только зеркальный канал и канал прямого прохождения.

Амплитуду гетеродинного напряжения выбирают такой, при которой получается возможно большее значение S,„, но без возникновения тока затвора.

Все цепи постоянного тока, падения напряжения на фильтровых и режимных сопротивлениях рассчитывают по постоянной составляющей тока с учетом наличия гетеродинного напряжения. Преобразователь частоты может иметь отдельный гетеродин (на другом транзисторе) или гетеродин, выполненный на том же транзисторе. В первом случае достигаются лучшие качественные показатели преобразователя в целом и обеспечивается большая гибкость схемы и легкость регулировок, во втором — большая экономичность.

На рис. 5.5 и 5.6 приведены схемы преобразователей частоты на полевых транзисторах с отдельными гетеродинами. В схеме рис. 5.5 гетеродинное напряжение подается на затвор через малую емкость связи Ссв, обеспечивающую необходимое ослабление гетеродинного напряжения. При этом контуры сигнала и гетеродина оказываются связанными и, будучи настроенными на разные частоты (/с и />), вносят друг в друга реактивные сопротивления, изменяющиеся при перестройке приемника. Сильная взаимозависимость настроек сигнального и гетеродинного контуров является недостатком схемы рис. 5.5.

■ Установка исходной рабочей точки транзистора осуществляется за счет автоматического истокового смещения — падения напряжения на сопротивлении R„ от постоянной составляющей тока истока. Емкость Си шунтирует сопротивление Ra для переменных токов всех частот, включая и /„. В схеме рис. 5.6 напряжение гетеродина подается на исток транзистора и вырабатывается на сопротивлении (ЯиП^-)- Разделение точек ввода

сигнального и гетеродинного напряжений ослабляет связь между контурами и уменьшает взаимозависимость их настроек. Недостатком данной схемы является повышенная мощность, потребляемая от гетеродина, и снижение стабильности частоты гетеродина за счет более сильного шунтирования его контура малым входным сопротивлением транзистора (~ 1/S0), включенного по отношению к гетеродину по схеме с общим затвором.. Не шунтированное емкостью сопротивление R„ создает обратную связь на постоянном токе и на промежуточной частоте, что снижает крутизну преобразования и коэффициент преобразования. Еще большей развязки сигнального и гетеродинного контуров можно добиться при использовании двухзатворных полевых транзисторов, подавая напряжения сигнала и гетеродина на разные затворы. Для расчета крутизны преобразования в этом случае необходимо знать зависимость крутизны от напряжения на затворе, на который подаются колебания гетеродина. Эту зависимость обычно можно аппроксимировать линейно-ломаной типа изображенной на рис. 5.4.

В преобразователях на полевых транзисторах при умеренно высоких частотах сигнала практически отсутствует обратное преобразование частоты и его влиянием можно пренебречь как при расчете входной и выходной проводимостей, так и с точки зрения обеспечения устойчивости. Входная и выходная проводимости примерно равны этим параметрам

Рис. 5.9

транзистора в усилительном режим на сигнальной и промежуточной ча< тотах соответственно.

Преобразователи частоты на 6i полярных транзисторах широко и< пользуют как в диапазоне умеренн высоких частот, так и в диапазон СВЧ.

По способам ввода гетеродинног напряжения преобразователи чаек ты на биполярных транзисторах основном аналогичны рассмотренны преобразователям на полевых тра1 зисторах. Примеры схем преобразов; гелей с отдельными гетеродинами npi ведены на рис. 5.7-5.9. Из сообр;

жений развязки сигнального и гетеродинного контуров чаще применяют схемы с вводом гетеродинного напряжения в эмиттерную цепь (рис. 5.8, 5.9). При этом транзистор оказывается включенным по отношению к источнику сигнала по схеме с общим эмиттером, а по отношению к гетеродину — с общей базой.

Если выполняется условие /0 < < (0,1-^0,2)/а, то расчет транзисторного преобразователя частоты можно выполнить на основе общей теории преобразования. При невыполнении этого условия производят расчет низкочастотных параметров преобразователя частоты, а затем находят их значения на рабочей частоте (входных — на частоте сигнала, выходных— — на промежуточной частоте).

Экспериментальные исследования показывают, что входная и выходная емкости транзистора в режиме преобразования частоты и в режиме усиления практически одинаковы, а активные проводимости приближенно равны:

(5.28)

где Yc — входная проводимость транзистора на частоте сигнала; Yinвыходная проводимость транзистора на промежуточной частоте.

Низкочастотное значение крутизны преобразования может быть найдено или непосредственно разложением в ряд Фурье временной зависи-

мости крутизны, получаемой из зависимости S (ы), или через разложение в ряды Фурье коэффициента усиления по току транзистора и его входной проводимости.

Зависимость S (u63)„K=COnst получают измерениями или дифференцированием прямой переходной характеристики ТраНЗИСТОра /K'(«63)iiK = cor,st.

В большинстве случаев зависимость крутизны от «г для биполярных транзисторов достаточно точно аппроксимируется экспонентой вида

(5.29)

(рис. 5.10). Здесь а — коэффициент, имеющий размерность 1/В; ит = = £г + £/rcosci)[i, причем Ег есть постоянное напряжение на промежутке база—эмиттер. Разложение

S, А с паЛ" V„ COS (i>_ t

гг) = с^е г е г г в рЯд

Фурье дает следующие выражения

для 5„ и S0:

(5.30) (5.31)

Здесь /0 (•), /„ (•) — модули бесселевых функций нулевого и л-го порядков от мнимого аргумента; S2! е г — крутизна транзистора в рабочей точке, задаваемой напряжением £г.

Обычно для преобразователей частоты на биполярных транзисторах оптимальное значение напряжения гетеродина да 50-^200 мВ, а ' потребляемая мощность Рг (при вводе в цепь эмиттера) составляет примерно единицы милливатт.

Преобразователи частоты с совмещенным гетеродином применяют редко и только в простейших приемниках, где главными критериями являются минимальный расход мощности от источника питания и дешевизна.

Поскольку все электроды биполярного транзистора токовые, в преобразователях частоты присутствует

эффект обратного преобразования частоты (взаимодействие составляющих с частотами соп и пшг дает составляющие с частотой сос = лсог — соп; ток частоты со0 обусловливает падение напряжения на входном контуре, вновь происходит прямое преобразование частоты и т. д.). Однако крутизна обратного преобразования частоты много меньше крутизны прямого преобразования и с этим эффектом при расчете величин /Сп, Gn в диапазоне умеренно высоких частот практически не считаются. Наличие обратного преобразования может вызвать неустойчивость работы преобразователя частоты, а так как использование нейтрализации здесь невозможно, необходимо обеспечивать устойчивую работу преобразователя частоты без цепей нейтрализации. Приближенно можно считать, что

(5.32)

где G06p — проводимость обратной связи применяемого транзистора.

Рассмотрим некоторые особенности расчета и проектирования транзисторных преобразователей частоты в диапазоне СВЧ, когда общая теория преобразования не может обеспечить высокую точность.

В диапазоне СВЧ транзисторные преобразователи частоты в ряде применений имеют определенные преимущества перед диодными преобразователями. Так, они позволяют получить усиление по мощности порядка 10—20 дБ при коэффициенте шума 3—6 дБ (в зависимости от типа транзистора и диапазона частот), в то время как диодные преобразователи дают ослабление по мощности. Это приводит к упрощению приемного уст-

ройства в целом за счет отказа от м лошумящего предварительного усил теля промежуточной частоты и умен шения числа каскадов УПЧ. К нед статкам транзисторных преобразов телей следует отнести необходимое в источнике питания, возможное самовозбуждения, более сложную н стройку транзисторного преобразов теля по сравнению с диодным.

Анализ транзисторных преобраз< вателей частоты в диапазоне СВ удобно проводить с помощью пар; метров рассеяния транзистора, изм! ренных в режиме преобразования ча* тоты, т. е. при подаче мощности п теродина на транзистор. При это параметр 511Гф измеряют на частот сигнала, параметр S22 пр — на пром< жуточной частоте, параметр S2l up -как отношение отраженной волны на пряжения промежуточной частоты . падающей волне напряжения входног сигнала, а параметр S12lip—какотне жение отраженной волны напряженш входного сигнала к падающей волн напряжения промежуточной частоты При таком подходе транзисторный пре образователь частоты можно рассмат ривать как линейный четырехполюс ник и для его расчета применять фор мулы, полученные для транзисторного усилителя с заменой усилительны? параметров на преобразовательные.

Пример схемы транзисторной: преобразователя частоты для диапазона СВЧ приведен на рис. 5.11. Транзистор включен по схеме ОБ. Мощности входного сигнала и колебания гетеродина подаются на транзистор через направленный ответвитель с переходным ослаблением 10—15 дБ во избежание ухудшения коэффициента шума за счет потерь во входной цепи

Контур LXCX в цепи эмиттера настроен на промежуточную частоту и устраняет обратную связь по току промежуточной частоты. Контур C2L.ZC3 настроен также на промежуточную частоту, его параметры выбирают из условий настройки на промежуточную

частоту /„ = 1/2л YL2^r7r ^

и согласования выходного сопротивления транзистора ^,lls с сопротивлением нагрузки (С2 +

СвЫУ)1 (С3-\- С-2 -\- Свах) = \^ RJR„b,x, где Свых — выходная емкость транзистора. Для предотвращения самовозбуждения последовательно с коллектором включен стабилизирующий резистор RCj, сопротивление которого должно превышать действительную часть отрицательного выходного сопротивления на частоте входного сигнала. Иными словами, самовозбуждение транзисторного преобразователя частоты, включенного по схеме ОБ, происходит как в усилителе на частотах вблизи частоты входного сигнала.

Анализ транзисторного преобразователя частоты с учетом зеркального и других каналов весьма громоздок (требует рассмотрения 8- и 12-полюс-ника). Однако результаты этого анализа показывают, что при надлежащем подборе и включении нагрузки по зеркальному каналу можно существенно снизить коэффициент шума.

В связи с разработкой двухзат-ворных полевых транзисторов СВЧ сейчас разрабатывают смесители на них, отличающиеся малыми габаритами, так как напряжения сигнала и гетеродина подаются на разные затворы транзистора и, следовательно,

для развязки цепей сигнала и. гетеродина не требуется громоздких мостов или направленных ответвителей. Коэффициент шума таких смесителей практически не хуже, чем у диодных, а коэффициент усиления по мощности около 5—10 дБ. Кроме того, они могут быть изготовлены в виде монолитных интегральных схем СВЧ.

Пример схемы транзисторного смесителя на двухзатворном полевом транзисторе СВЧ приведен на рис. 5.12. Напряжения сигнала и гетеродина подаются на соответствующие затворы полевого транзистора через отрезки микрополосковых линий передачи. Индуктивность Lx компенсирует емкость промежутка затвор—исток на частоте входного сигнала, а отрезок микрополосковой линии длиной /х да Хс/4 согласует активную часть входного сопротивления транзистора с сопротивлением источника сигнала.

Для развязки цепей сигнала и смещения включен разомкнутый на конце отрезок линии длиной /2 = Яс/4 и отрезок линии длиной /3 да Яс/4. Отрезок линии длиной /4 да 1г/4 обеспечивает короткое замыкание стока для колебаний гетеродина во избежание перегрузки УПЧ напряжением гетеродина. В настоящее время такие смесители успешно применяются в сантиметровом диапазоне длин волн.