Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kolokvium_II.docx
Скачиваний:
32
Добавлен:
28.08.2019
Размер:
96.78 Кб
Скачать

10. Витамин “с”(аскорбиновая кислота, антицинготный, антискорбутный)

Химическая структура: лактон кислоты со структурой, близкой к структуре L-глюкозы. Является сильной кислотой. Природные изомеры, обладающие витаминной активностью, относятся к L-ряду.

Коферментные формы: не известны.

Участие в метаболизме: биологическая роль связана с его участием в окислительно-восстановительных реакциях:

1. Витамин С, являясь сильным восстановителем, играет роль кофактора в реакциях окислительного гидроксилирования, что необходимо для окисления аминокислот пролина и лизина в оксипролин и в оксилизин в процессе биосинтеза коллагена.

2. Участвует в синтезе стероидных гормонов коры надпочечников (кортикостероидов).

3. Участвует в синтезе аминокислоты триптофана.

4. Способствует распаду тирозина и гемоглобина в тканях.

5. Необходим для всасывания железа.

6. Участвует в неспецифической иммунной защите организма.

Суточная потребность - около 100 мг в сутки.

Лечебная доза - до 1-2 г в сутки.

11. Катаболизм (диссимиляция) – расщепление крупных молекул до более простых веществ в результате окислительных процессов или процессов гидролиза и фосфоролиза, сопровождающееся разрывов ковалентных связей и высвобождением энергии.

Примеры: гликолиз, гликогенолиз, окисление жирных кислот.

12. Анаболизм (ассимиляция) – синтез сложных органических соединений из простых молекул в результате восстановительных процессов (как правило), сопровождающийся образованием связей между малыми молекулами в процессе синтеза более высокомолекулярных соединений и осуществляющийся с затратой энергии.

Примеры: глюконеогенез, синтез жирных кислот, фотосинтез у растений.

13. Отличия катаболизма от анаболизма:

Отличительный признак

Катаболизм

Анаболизм

1. Энергия

Высвобождается (экзергонический процесс)

Затрачивается (эндергонический процесс)

2. Характер процесса

Окислительный

Восстановительный

3. Локализация в клетке (компартментация метаболических процессов)

Цитоплазма, митохондрии, лизосомы

Цитоплазма клетки, рибосомы, ЭПС, КГ, ядро

4. Обратимость реакций

Практически необратимы

В основном обратимы

Также процессы катаболизма и анаболизма различаются по механизмам регуляции.

Уровни взаимосвязи между ката– и анаболизмом.

1. На уровне источников углерода (субстратов).

Продукты катаболизма – исходные субстраты для продуктов анаболизма. Важнейшие метаболиты, на уровне которых происходит пересечение метаболических путей: глюкозо-6-фосфат, пируват, ацетил-КоА.

2. На уровне восстановленных эквивалентов.

В процессе катаболизма происходит восстановление кофермента, который затем используется для анаболических процессов.

НАДФН – основной донор электронов в восстановительных реакциях биосинтеза. НАДН и ФАДН2 – основные акцепторы и переносчики электронов при окислении «топливных молекул».

3. На энергетическом уровне.

Катаболизм основных пищевых веществ сопровождается высвобождением энергии, которая может аккумулироваться в форме АТФ. При анаболических процессах происходит потребление АТФ с образованием АДФ и неорганического фосфата, используемых в реакциях диссимиляции для нового синтеза АТФ.

14. Макроэргические соединения (греч. makros большой + ergon работа, действие) – соединения, содержащие богатую энергией (макроэргическую) связь, при гидролизе которой изменения свободной энергии системы составляют более 5 ккал/моль.

Все известные М.с. содержат фосфорильную (—РО3Н2) или ацильную группы и могут быть описаны формулой Х—Y, где Х — атом азота, кислорода, серы или углерода, а Y — атом фосфора или углерода. Реакционная способность М.с. связана с повышенным сродством к электрону атома Y, что обусловливает высокую свободную энергию гидролиза макроэргической связи.

Примеры – фосфоенолпируват, 1,3-дифосфоглицерат, креатинфосфат, ацетил-КоА, АТФ, АДФ, пирофосфат.

15. Адениловая система – система адениловых нуклеотидов, которая включает в себя АТФ, АДФ, АМФ, неорганический фосфат и ионы Mg2+.

Роль адениловой системы:

1) играет центральную роль в энергообмене всех клеток

2) благодаря неустойчивости АТФ энергия ее концевой фосфоангидридной связи АТФ может использоваться на синтез фосфорилированных метаболитов, имеющих свободную энергию гидролиза меньше, чем АТФ. Обратное превращение АДФ в АТФ требует энергии.

Основные процессы, использующие энергию гидролиза АТФ:

1. Синтез различных веществ.

2. Активный транспорт (транспорт веществ через мембрану против градиента их концентраций). 30% от общего количества расходуемого АТФ приходится на Na++-АТФазу.

3. Механическое движение (мышечная работа).