Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции Метрология-11.doc
Скачиваний:
51
Добавлен:
23.08.2019
Размер:
212.48 Кб
Скачать

Тема: Погрешности измерений

Погрешностью измерения называют отклонение результата измерения от истинного значения измеряемой величины.

Истинные значения физических величин – это значения, идеальным образом отражающие свойства данного объекта как в количественном, так и в качественном отношении.

Результаты измерений представляют собой приближенные оценки значений величин, найденные путем измерения. Они зависят от метода измерения, от технических средств, с помощью которых проводятся измерения, и от свойств органов чувств наблюдателя, осуществляющего измерения.

Поскольку истинное значение измеряемой величины неизвестно, то вместо истинного значения подставлять так называемое действительное значение.

Под действительным значением физической величины понимают ее значение, найденное экспериментально и настолько приближающееся к истинному, что для данной цели оно может быть использовано вместо него (принимают обычно показания эталонов).

Погрешности измерений классифицируются: по форме числового выражения, по источникам возникновения, по характеру проявлений.

По форме числового выражения погрешности измерений подразделяют на абсолютные и относительные. В зависимости от формы выражения различают абсолютную, относительную и приведенную погрешности измерения.

Абсолютная погрешность определяется как разность ∆ = х - хд или ∆ = х-хд, а относительная – как отношение:

Приведенная погрешность , где xn нормированное значение величины. Например, xn= xmax, где хmах – максималь­ное значение измеряемой величины.

В качестве истинного значения при многократных измерениях параметра выступает среднее арифметическое хи значение:

.

Средняя арифметическая полученная в одной серии измерений, является случайным приближением к хи. Для оценки ее возможных откло­нений от хи определяют опытное среднее квадратическое откло­нение (СКО):

.

Среднее арифметическое из ряда измерений всегда имеет мень­шую погрешность, чем погрешность каждого определенного из­мерения. Из него следует, что если необходимо повысить точность результата (при исключенной си­стематической погрешности) в 2 раза, то число измерений нужно увеличить в 4 раза; если требуется увеличить точность в 3 раза, то число измерений увеличивают в 9 раз и т. д.

По источникам возникновения погрешности подразделяют на инструментальные (обусловлены свойствами средств измерений). методические (возникают вследствие несовершенства принятого метода измерений, допущений и упрощений при использовании эмпирических зависимостей) и субъективные (погрешности оператора).

По характеру проявлений погрешности измерений подразделяют на систематические и случайные.

Систематические погрешности остается постоянными или изменяются по определенному закону при повторных измерениях одной и той же величины. По характеру изменения во времени систематические погрешности подразделяют на постоянные и временные.

Случайные погрешности (в том числе грубые погрешности и промахи) изменяются случайным образом при повторных измерениях одной и той же величины. Грубые погрешности – внезапное падение напряжения в сети электропитания. Промахи – погрешности, зависящие от наблюдателя и связанные с неправильным обращением со средствами измерений, неверным отсчетом показаний или ошибками при записи результатов.

В процессе измерения оба вида погрешностей проявляются одновременно, и погрешность измерения можно представить в виде суммы случайной и систематической погрешности.

При проведении измерений целью является оценка истинного значения измеряемой величины, которое до опыта неизвестно. Результат измерения включает в себя помимо истинного значения еще и случайную погрешность, следовательно, сам является случайной величиной. В этих условиях фактическое значение случайной погрешности, полученное при поверке, еще не характеризует точности измерений, поэтому не ясно, какое же значение принять за окончательный результат измерения и как охарактеризовать его точность.

Ответ на эти вопросы можно получить, используя при метрологической обработке результатов измерения методы математической статистики, имеющей дело именно со случайными величинами.

Факторы, определяющие возникновение случайных погрешностей, проявляются нерегулярно, в различных комбинациях и с интенсивностью, которую трудно предвидеть.

Наиболее универсальный способ описания случайных величин заключается в отыскании их интегральных или дифференциальных функций распределения.

Интегральной функцией распределения называют функцию, значение которой для каждого x является вероятностью появления значений Xi (в i-м наблюдении), меньших x.

График интегральной функции распределения результатов наблюдений представляет собой непрерывную неубывающую кривую, начинающуюся от нуля на отрицательной бесконечности и асимптотически приближающуюся к единице при увеличении аргумента до плюс бесконечности.

На рис. показаны примеры функций распределения вероятности.

Более наглядным является описание свойств результатов наблюдений и случайных погрешностей с помощью дифференциальной функции распределения, иначе называемой плотностью распределения вероятностей.

Свойство плотности распределения вероятности:

– вероятность достоверного события равна 1; иными словами, площадь, заключенная между кривой дифференциальной функции распределения и осью абсцисс, равна единице.

Однако для наибольшего числа встречающихся на практике случайных величин можно ожидать распределение по так называемому закону нормального распределения (закону Гаусса).

На рис. изображены кривые нормального распределения случайных погрешностей для различных значений среднеквадратического отклонения .

Из рисунка видно, что по мере увеличения среднеквадратического отклонения распределение все более и более расплывается, вероятность появления больших значений погрешностей возрастает, а вероятность меньших погрешностей сокращается, т.е. увеличивается рассеивание результатов наблюдений.

В производственной практике часто считается необходимым выполнения следующего условия: допустимое предельное отклонение от заданного номинального размера должно быть не меньше интервала ±3σ. В этом случае в среднем одно из 370 изделий будет бракованным.

Обработка результатов измерений содержащих случайные погрешности.

При большом числе результатов наблюдений (n>40) данная задача решается в следующем порядке.

Весь диапазон полученных результатов наблюдений Xmax ... Xmin разделяют на r интервалов ( см. табл. далее) шириной ∆Xi (i = 1, 2, …, r) и подсчитывают частоты mi, равные числу результатов, лежащих в каждом i-м интервале, т. е. меньших или равных его правой и больших левой границы.

Отношения Pi, называются частостями и представляют собой статистические оценки вероятностей попадания результата наблюдений в i-й интервал:

где n - общее число наблюдений

Распределение частот по интервалам образует статистическое распределение результатов наблюдений.

Отложим вдоль оси результатов наблюдений (рис.) интервалы ∆Xi в порядке возрастания индекса i и на каждом интервале построим прямоугольник с высотой, равной . Полученный график называется гистограммой статистического распределения.

Площадь суммы всех прямоугольников равна единице:

При увеличении числа наблюдений число интервалов можно увеличить. Сами интервалы уменьшаются, и гистограмма все больше приближается к плавной кривой, ограничивающей единичную площадь, – к графику плотности распределения результатов наблюдений.

При построении гистограмм рекомендуется пользоваться следующими правилами:

1. Число интервалов выбирается в зависимости от числа наблюдений согласно рекомендациям табл..

Таблица

n

r

40 – 100

7 – 9

100 – 500

8 – 12

500 – 1000

10 – 16

1000 – 10000

12 – 22

2. Длины интервалов удобнее выбирать одинаковыми. Однако если распределение крайне неравномерно, то в области максимальной концентрации результатов наблюдений следует выбирать более узкие интервалы.

3. Масштабы по осям гистограммы должны быть такими, чтобы отношение ее высоты к основанию составляло примерно 5:8.