Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 1 Случайные события.doc
Скачиваний:
10
Добавлен:
20.08.2019
Размер:
246.78 Кб
Скачать

1.2.2 Теорема сложения вероятностей для совместных событий

Теорема. Вероятность суммы двух совместных событий равна сумме вероятностей этих событий минус вероятность их совместного появления. Т.е., если события A и B совместны, то

Доказательство.

Пусть испытание имеет n элементарных равновозможных исходов, из которых событию A благоприятны m исходов, событию B благоприятны k исходов, событию AB благоприятны l исходов, тогда

Число исходов, благоприятных сумме A+B событий A и B будет равно` поэтому

что и требовалось доказать.

В случае трех совместных событий вероятность их суммы вычисляется по формуле

В случае же n совместных событий вероятность их суммы может вычисляться по формуле

Пример 3: Три стрелка стреляют по одной цели. Найти вероятность поражения цели при одном залпе, если вероятности поражения цели соответственно равны: 0,8; 0,8; и 0,9.

Решение.

Рассмотрим события:

A – поражение цели;

B – поражение цели I - м стрелком (I =1,2,3).

Так как требуется определить вероятность поражения цели вообще, то событие A есть сумма событий являющихся совместными и независимыми. Поэтому

Теорема сложения вероятностей для несовместных событий. Вероятность суммы нескольких несовместных событий равна сумме вероятностей этих событий, т.е.

Эта теорема является частным случаем теоремы сложения вероятностей для несовместных событий.

Следствия из теоремы.

Следствие 1. Если события несовместны и образуют полную группу, то

Следствие 2. Два несовместных события, образующих полную группу, называют противоположными событиями. Сумма вероятностей противоположных событий равна единице, т.е.

.

1.2.3 Зависимые и независимые события

Для нахождения вероятностей совместного появления событий необходимо уточнить понятия зависимости и независимости событий.

Событие A называют зависимым от события B, если вероятность события A зависит от того, произошло событие B или нет.

Событие A будем называть независимым от события B, если вероятность события A не зависит от того, произошло или не произошло событие B.

Пример зависимых событий. В ящике 3 белых и 5 черных шаров. Последовательно берутся 2 шара. Определить вероятность того, что второй шар будет белым.

Решение.

Случай 1. Если первым вынут черный шар, то вероятность того, что второй шар будет белым равна

Случай 2. Если первый шар оказался белым, то вероятность того, что второй шар будет белым равна

Примером независимых событий является этот же пример, но с возвращением первого шара в ящик.

Вероятность появления зависимого события называют условной вероятностью, а вероятность появления независимого события - безусловной вероятностью. Под условной вероятностью P(A/B) события A понимают вероятность этого события, которая вычислена при условии, что событие B произошло.

Если события A и B независимы, то условная вероятность события A равна безусловной вероятности этого события, т.е.

Если же события A и B зависимы, то условная вероятность события A неравна безусловной вероятности этого события, т.е.