Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РГР-32.doc
Скачиваний:
1
Добавлен:
17.08.2019
Размер:
195.07 Кб
Скачать

2. Выбор материала и допускаемых напряжений зубчатых колес (для схемы 3)

2.1. Выбор материала зубчатых колес рядовой ступени редуктора

Для зубчатых колес редуктора выбираем сталь 40Х. Заготовка – поковка. Термообработка зубчатых колес – улучшение до твердости 260…280НВ [4, табл. 8.8]. Для улучшенной стали 40Х с твердостью 260…280НВ предел прочности В = 950 МПа, предел текучести Т = 700 МПа.

Примем для ведущего колеса (шестерни) твердость – 280НВ, а для ведомого колеса – 260НВ.

Для удобства расчетов присвоим шестерне и ведомому колесу соответственно индексы 1 и 2.

2.2. Расчет допускаемых контактных напряжений Н зубьев шестерни и колеса рядовой ступени

Допускаемые контактные напряжения:

для шестерни Н1 = KHL1;

для колеса Н2 = KHL2.

Здесь Hlim1 и Hlim2 – пределы контактной выносливости шестерни и колеса [4, табл. 8.9]; SH = 1,1[4] – коэффициент безопасности; KHL1 и KHL2 – коэффициенты долговечности шестерни и колеса.

Пределы контактной выносливости [4, табл. 8.9]:

для шестерни H lim 1 = 2НВ + 70 = 2280 + 70 = 630 МПа.

для колеса H lim 2 = 2НВ + 70 = 2260 + 70 = 590 МПа.

Коэффициент долговечности KHL

1 KHL =  2,6 ,

где Nи NHE – базовое и эквивалентное числа циклов нагружений.

Если при вычислениях величина KHL выходит за границы интервала [1, 2,6], то следует принять в качестве KHL ближайшее граничное значение интервала.

Базовое число циклов нагружений шестерни и колеса [5]

NНО 1 = 30(НВ)2,4 = 302802,4 = 2,24107;

NНО 2 = 30(НВ)2,4 = 302602,4= 1,88107.

Эквивалентное число циклов нагружений шестерни [4]:

NНЕ 1 = 60·с· n1· ·ti ,

где с = 1 – число нагружений (зацеплений) зуба за один оборот колеса;

n1 – частота вращения шестерни ( n1 = n = 2850 мин –1);

Тi – крутящий момент по графику загрузки привода;

Тmax – максимально длительно действующий момент (число циклов действия которого превышает величину 0,5 ·105 );

ti = ai ·t – длительность ступени нагрузки Тi.

Для определения эквивалентного числа циклов нагружений зубьев шестерни NHЕ1 найдем срок службы привода и время действия каждой ступени нагрузки.

Срок службы привода

t = 365·24·L·KГ·KС= 365·24·2,8·0,75·0,6 = 11037,6 ч.

Время действия ступеней нагрузки:

t1 = a1·t = 10–3·11037,6 = 11,04 ч;

t2 = a2·t = 0,6·11037,6 = 6622,56 ч;

t 3 = a3·t = 0,3·11037,6 = 3311,28 ч;

t4 = a4·t = 0,1·11037,6 = 1103,76 ч.

Определим какой момент является максимально длительно действующим Тmax? Рассмотрим первую ступень нагрузки с моментом TП, действующим время t1 = 11,04 ч. Момент TП представляет пусковой момент Тпуск электродвигателя. Тпуск = 2,2Тном [1] (см. раздел 1.4). Номинальный момент Тном соответствует моменту Т графика загрузки привода, т. е. TП = 2,2Т.

Число циклов нагружений шестерни за время t1 будет:

N1 = 60·с·n1t1 = 60·1·2850·11,04 = 18,88·105 > 0,5×105 .

Следовательно, Тmax соответствует первой ступени нагрузки привода, т. е. Тmax = TП = 2,2Т.

Эквивалентное число циклов нагружений зубьев шестерни

NНЕ 1 = 60с·n1·t· ·α i = 60·1·2850·11037,6 

=1,30×108.

Эквивалентное число циклов нагружений зубьев колеса

NНЕ 2 = =3,17×107. Здесь iрс – передаточное отношение рядовой ступени редуктора (см. раздел 1.6).

Коэффициент долговечности зубьев шестерни

KHL 1 = = 0,74. KHL1 [1, 2,6]; принимаем KHL1 = 1.

Коэффициент долговечности зубьев колеса KHL 2

KHL 2 = = 0,92. KHL1 [1, 2,6]; принимаем KHL 2 = 1.

Окончательно для рядовой ступени имеем:

Н1 = KHL1 = ·1= 572,73 МПа;

Н2 = KHL2 = ·1= 536,36 МПа.

Для прямозубых передач за расчетное Н принимают меньшее из напряжений Н1 и Н2 4. Таким образом, для колес рядовой ступени расчетное допускаемое контактное напряжение Н = 536,36 МПа.

2.3. Расчет допускаемых напряжений изгиба f зубьев колес рядовой ступени редуктора

Допускаемые напряжения изгиба:

для шестерни F1 = ·KFL 1KFС ;

для колеса F2 = ·KFL 2KFС .

Здесь (Flim1; Flim2) и (KFL1; KFL2) – пределы выносливости по напряжениям изгиба и коэффициенты долговечности соответственно шестерни и колеса; SF = 1,55…1,75 – коэффициент безопасности; KFС – коэффициент влияния приложения нагрузки к зубу (при односторонней нагрузке KFС = 1; при двусторонней (реверсивной) нагрузке KFС = 0,7…0,8 [4]).

Пределы выносливости по напряжениям изгиба [4, табл. 8.9]:

для шестерни F lim1 = 1,8НВ = 1,8280 = 504 МПа;

для колеса F lim 2 = 1,8НВ = 1,8260 = 468 МПа.

Коэффициент долговечности KFL

1 KFL =  4,

где NFО и NFE – базовое и эквивалентное числа циклов нагружений.

Для всех сталей базовое число циклов нагружений NFO = 4·106 [4].

Если при расчетах величина KFL [1, 4], то следует принять в качестве KFL ближайшее граничное значение интервала.

Эквивалентное число циклов нагружений зубьев шестерни [5]:

NFЕ 1 = 60·с·n1· ·ti .

В разделе 2.2 для выражения NНЕ1 указаны параметры с, n1, Тi, Тmax , ti и установлено, что Тmax = TП = 2,2Т. Из графика загрузки ti = ai ·t . Отсюда

NFЕ 1 = 60·с·n1·t· ·ai = 60·1·2850·11037,6 

= 1,34×107.

Эквивалентное число циклов нагружений зубьев колеса

NFЕ 2 = = 3,27×106.

Коэффициенты долговечности зубьев колес

KFL 1 = = 0,82. KFL  [1, 4]; принимаем KFL1 = 1.

KFL 2 = = 1,034.

Окончательно допускаемые напряжения изгиба для зубьев:

шестерни F1 = ·KFL 1KFС = ×11 = 305,45 МПа;

колеса F2 = ·KFL 2KFС = ×1,0341 = 293,28 МПа.

Здесь SF = 1,65; KFС = 1.

2.4. Выбор материала зубчатых колес планетарной ступени редуктора

Для зубчатых колес планетарной ступени возмем легированную сталь 40Х. Заготовка – поковка; термообработка – улучшение до твердости 260…280НВ [4, табл. 8.8]; предел прочности В = 950 МПа; предел текучести Т = 700 МПа.

Расчет производим по паре сопряженных подвижных колес z6 и z4. Колесо z6 имеет угловую скорость 6 =h(1– z3/z5)=74,49(1– 224/56)= –223,47 с–1. Здесь h =  = 74,49 с–1 (см. раздел 1.7); z3 = 224; и z5 = 56 (см. раздел 1.9); знак “–” говорит о разном направлении вращения блока сателлитов и водила. Колесо z4 имеет угловую скорость 4 =  = 5,24 с–1. Колесо z4 более нагружено, нежели колесо z6, поэтому зададим твердость колесу z4 – 280НВ, а колесу z 6 – 260НВ.

В расчетах используем индексы 4 и 6, принятые для обозначения колес.

2.5. Расчет допускаемых контактных напряжений н зубьев колес планетарной ступени редуктора

Допускаемые контактные напряжения:

для колеса z4Н4 = KHL4;

для колеса z6 Н6 = KHL6.

Пределы контактной выносливости:

для колеса z4 H lim 4 = 2НВ + 70 = 2280 + 70 = 630 МПа.

для колеса z6 H lim 6 = 2НВ + 70 = 2260 + 70 = 590 МПа;

Коэффициент долговечности KHL

1 KHL =  2,6.

Базовые числа циклов нагружений зубьев колес z4 и z6:

NНО 4 = 30(НВ)2,4 = 302802,4 = 2,24107;

NНО 6= 30(НВ)2,4 = 302602,4= 1,88107.

Эквивалентное число циклов нагружений зубьев колеса z4 [3]:

NНЕ 4 = 60с·n4 nh· t· ·α i,

где с = 3 – число зацеплений зуба за один оборот колеса z4 равно количеству сателлитов С = 3; n4 = n = 50,05 мин–1 (см.раздел 1.7; nh = n = 730,77 мин–1 (см.раздел 1.7).

Определим максимально длительно действующий момент для колеса z4. Для этого найдем число циклов нагружений зубьев колеса z4 при действии первой ступени нагрузки.

N = 60·с·n4 nh·t1 = 60·3·50,05–730,77·11,04 = 13,53·105 > 0,5×105.

Максимально длительно действующий момент относится к первой ступени нагрузки. Тmax = TП = 2,2Т.

Эквивалентное число циклов нагружений зубьев колеса z4

NНЕ4 = 60с·(n4 nht·

=

=60·3·50,05–730,77·11037,6·(13·10–3+0,453·0,6+0,363·0,3+0,323·0,1)=9,87×107.

Эквивалентное число циклов нагружений зубьев колеса z6

NНЕ 6 = 60·с·(n6 nh)· ·ti ,

Определим максимально длительно действующий момент на зубьях колеса z6. Рассмотрим первую ступень нагрузки. Число циклов нагружений зубьев колеса z6 за время t1 = 11,04 ч. будет:

N = 60·с·(n6 nh)t1 = 60·1·(2135,06–730,77)·11,04 = 9,30·105 > 0,5×105,

где n6 = 306 / = 30·223,47/3,14 = 2135,06 мин–1.

Следовательно, максимально длительно действующий момент Тmax = TП = 2,2Т.

Эквивалентное число циклов нагружений колеса z6

NНЕ 6 = 60с·(n6 nht· ·α i =

=60·1·(2135,06–730,77)·11037,6·(13·10–3+0,453·0,6+0,363·0,3+0,323·0,1)=6,79×107.

Коэффициенты долговечности зубьев колеса z4 и z6

KHL4 = = 0,78. Величина KHL4  [1, 2,6], поэтому принимаем KHL4 = 1.

KHL6 = = 0,81. Принимаем KHL6 = 1.

Окончательно для зубьев колес z4 и z6 имеем:

Н4 = KHL4 = ·1= 572,73 МПа;

Н6 = KHL6 = ·1= 536,36 МПа.

Принимаем за расчетное допускаемое контактное напряжение для всех зубчатых колес планетарной ступени редуктора Н = 536,36 МПа.

2.6. Расчет допускаемых напряжений изгиба F зубьев колес планетарной ступени редуктора

Расчет производим по зубчатым колесам z4 и z6. Допускаемые напряжения изгиба зубьев колес:

F4 = ·KFL4KFС4 ;

F6 = ·KFL6KFС6 .

Здесь SF = 1,65 – коэффициент безопасности; KFС 4 = KFС 6 = 1 – коэффициент влияния приложения нагрузки к зубу (нагрузка односторонняя).

Пределы выносливости по напряжениям изгиба:

F lim4 = 1,8НВ = 1,8280 = 504 МПа;

F lim6 = 1,8НВ = 1,8260 = 468 МПа.

Коэффициент долговечности KFL

1 KFL =  4; (NFO = 4·106 [4] ).

Эквивалентные числа циклов нагружений зубьев колес z4 и z6:

NFЕ 4 = 60с·n4 nh·t· ·α i = 60с·(n4 nht·  =

=60·3·50,05–730,77·11037,6·(16·10–3+0,456·0,6+0,363·0,3+0,326·0,1)=1,23×107;

NFЕ 6 = 60·с·(n6 nht· ·ai =

=60·1·(2135,06–730,77)·11037,6·(16·10–3+0,456·0,6+0,326·0,3+0,276·0,1)=6,84×106.

Коэффициенты долговечности KFL 4 и KFL 6 для колес z4 и z6:

KFL 4 = = 0,83; KFL 4  [1, 4], поэтому KFL 4 = 1;

KFL6 = = 0,91; Примем KFL 6 = 1.

Окончательно допускаемые напряжения изгиба для зубьев:

колеса z4F4 = ·KFL 4KFС = ×11 = 305,45 МПа.

колеса z6 F6 = ·KFL 6KFС = ×11 = 283,64 МПа;

Здесь SF = 1,65; KFС = 1.

Для зубчатого колеса z5 примем F5 = F6 = 283,64 МПа; для колеса z3 примем F3 = F4 = 305,45 МПа

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]