Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 4 (теор. упруг. и плст.).docx
Скачиваний:
8
Добавлен:
08.08.2019
Размер:
53.75 Кб
Скачать
    1. Плоска задача теорії пружності в прямокутній системі координат.

Р озглянемо плоску пластину до якої прикладене зовнішнє навантаження. Будемо вважати, що її товщина дуже мала у порівняння з поперечними розмірами. За таких умов, розглядуване тіло є дуже тонка розтягнута плівка. Виділимо нескінченно малий прямокутний елемент пластини (рис. 4.1). На його гранях, в загальному випадку, виникають напруження σx, σy, τxy = τyx = τ. На бокових (заштрихованих) гранях цього елемента напруження відсутні: σz = 0, τxz = 0, τyz =0. Припустимо, що ці напруження дорівнюють нулю і у внутрішніх точках елемента. Описуваний стан називають узагальненим плоским напруженим станом елемента. Він характеризується тим, що дві паралельні грані нескінченно малого елемента, вільні від напружень. Напруження σx, σy, τ при цьому рівномірно розподілені за товщиною пластини.

Рівняння теорії пружності значно спрощуються для випадку плоского напруженого стану, оскільки задача зводиться до визначення тільки двох змінних. При плоскому напруженому стані, в пружному тілі, переміщення відбуваються тільки паралельно площині xOy:

Підставляючи ці складові переміщень в геометричні співвідношення Коші (4.3), отримаємо:

(4.12)

Незважаючи на те, що в напрямку осі Oz відсутні лінійні деформації, в цьому напрямку діє напруження σz. При цьому елемент перебуває в стані плоскої деформації. Єдина відмінність останнього від узагальненого плоского напруженого стану це те що σz ≠0. Напруження σz залежать від напружень, що діють в площині xOy. Дійсно, з третьої формули закону Гука (4.5) за відсутності деформації εz, отримаємо:

звідки

(4.13)

Це ж рівняння можна записати наступним чином:

Зважаючи на сказане запишемо основні рівняння теорії пружності для випадку плоского напруженого стану.

Диференціальні рівняння рівноваги (4.1) набувають вигляду:

(4.14)

Оскільки на боковій поверхні в усіх точках направляючий косинус n = 0, то з рівнянь умов на поверхні (4.2) залишаються тільки два:

(4.15)

Шість геометричних співвідношень Коші (4.3) зводяться до трьох:

(4.16)

З шести рівнянь нерозривності деформацій (4.4) залишається лише тільки одне, а інші перетворюються на тотожність:

(4.17)

З шести формул закону Гука (4.5) залишаються тільки три, які з врахуванням виразів (4.12), (4.13) набувають вигляду :

(4.18)

Введемо позначення. Нехай тоді формули (4.18) набувають вигляду:

(4.19)

при цьому значення коефіцієнта пропорційності в третьому рівнянні не змінюється:

Узагальнений плоский напружений стан.

Як згадувалося раніше узагальнений плоский напружений стан відрізняється від стану плоскої деформації тим, що для першого випадку σz = 0. Якщо за допомогою узагальненого закону Гука (4.5) перейти від напружень до деформацій, то отримаємо:

Тобто відносна деформація в напрямку осі z буде відмінною від нуля. Відповідно основа пластинки буде дещо викривлятися.

За цих припущень основні рівняння плоскої деформації – диференціальні рівняння рівноваги (4.14), умови на поверхні (4.15), геометричні співвідношення Коші (4.16) та рівняння нерозривності деформацій (4.17) – зберігають такий же вигляд і в задачі про узагальнений плоский напружений стан. Формули узагальненого закону Гука (4.5) набувають вигляду:

(4.20)

Останні відрізняються від закону Гука (4.19) для плоскої деформації тільки значенням пружних сталих μ, Е. Відповідно, при розв’язанні задач по плоскій деформації та плоскому напруженому стану можна користуватися одніми і тими ж самими рівняннями та поєднувати їх в одну: плоску задачу теорії пружності.